Gaussian processes for machine learning

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rasmussen, Carl Edward (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, Mass. [u.a.] MIT Press 2006
Schriftenreihe:Adaptive computation and machine learning
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV021552118
003 DE-604
005 20221202
007 t|
008 060418s2006 xxud||| |||| 00||| eng d
010 |a 2005053433 
020 |a 9780262182539  |9 978-0-262-18253-9 
020 |a 026218253X  |9 0-262-18253-X 
035 |a (OCoLC)61285753 
035 |a (DE-599)BVBBV021552118 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-91G  |a DE-706  |a DE-355  |a DE-29T  |a DE-83  |a DE-11  |a DE-91  |a DE-188  |a DE-384  |a DE-703  |a DE-739 
050 0 |a QA274.4 
082 0 |a 519.2/3  |2 22 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
084 |a ST 304  |0 (DE-625)143653:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a DAT 708f  |2 stub 
084 |a MAT 605f  |2 stub 
100 1 |a Rasmussen, Carl Edward  |e Verfasser  |0 (DE-588)1137889306  |4 aut 
245 1 0 |a Gaussian processes for machine learning  |c Carl Edward Rasmussen ; Christopher K.I. Williams 
264 1 |a Cambridge, Mass. [u.a.]  |b MIT Press  |c 2006 
300 |a XVIII, 248 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Adaptive computation and machine learning 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
650 4 |a Apprentissage automatique - Modèles mathématiques 
650 4 |a Processus gaussiens - Informatique 
650 4 |a Datenverarbeitung 
650 4 |a Mathematisches Modell 
650 4 |a Gaussian processes  |x Data processing 
650 4 |a Machine learning  |x Mathematical models 
650 0 7 |a Gauß-Prozess  |0 (DE-588)4156111-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 1 |a Gauß-Prozess  |0 (DE-588)4156111-9  |D s 
689 0 |5 DE-604 
700 1 |a Williams, Christopher K. I.  |d ca. 20./21. Jh.  |e Sonstige  |0 (DE-588)1274480272  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014768173&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-014768173 

Datensatz im Suchindex

DE-BY-TUM_call_number 0003 DAT 708f 2019 L 317
0040 2020 B 1028
0041 DAT 708f 2014 B 719
0102 DAT 708f 2006 B 1725
DE-BY-TUM_katkey 1547104
DE-BY-TUM_location 00
LSB
01
DE-BY-TUM_media_number 040008577395
040008577384
040008577373
040008577362
040007773722
040008593157
040008355160
040010811851
DE-BY-UBR_call_number 440/ST 300 R225
DE-BY-UBR_katkey 4022997
DE-BY-UBR_media_number TEMP12040695
_version_ 1822694722183888896
adam_text Contents Series Foreword xi Preface xiii Symbols and Notation xvii 1 Introduction 1 1.1 A Pictorial Introduction to Bayesian Modelling 3 1.2 Roadmap 5 2 Regression 7 2.1 Weight space View 7 2.1.1 The Standard Linear Model 8 2.1.2 Projections of Inputs into Feature Space 11 2.2 Function space View 13 2.3 Varying the Hyperparameters 19 2.4 Decision Theory for Regression 21 2.5 An Example Application 22 2.6 Smoothing, Weight Functions and Equivalent Kernels 24 * 2.7 Incorporating Explicit Basis Functions 27 2.7.1 Marginal Likelihood 29 2.8 History and Related Work 29 2.9 Exercises 30 3 Classification 33 3.1 Classification Problems 34 3.1.1 Decision Theory for Classification 35 3.2 Linear Models for Classification 37 3.3 Gaussian Process Classification 39 3.4 The Laplace Approximation for the Binary GP Classifier 41 3.4.1 Posterior 42 3.4.2 Predictions 44 3.4.3 Implementation 45 3.4.4 Marginal Likelihood 47 * 3.5 Multi class Laplace Approximation 48 3.5.1 Implementation 51 3.6 Expectation Propagation 52 3.6.1 Predictions 56 3.6.2 Marginal Likelihood 57 3.6.3 Implementation 57 3.7 Experiments 60 3.7.1 A Toy Problem 60 3.7.2 One dimensional Example 62 3.7.3 Binary Handwritten Digit Classification Example 63 3.7.4 10 class Handwritten Digit Classification Example 70 3.8 Discussion 72 Sections marked by an asterisk contain advanced material that may be omitted on a first reading. Contents * 3.9 Appendix: Moment Derivations 74 3.10 Exercises 75 4 Covariance Functions 79 4.1 Preliminaries 79 * 4.1.1 Mean Square Continuity and Differentiability 81 4.2 Examples of Covariance Functions 81 4.2.1 Stationary Covariance Functions 82 4.2.2 Dot Product Covariance Functions 89 4.2.3 Other Non stationary Covariance Functions 90 4.2.4 Making New Kernels from Old 94 4.3 Eigenfunction Analysis of Kernels 96 * 4.3.1 An Analytic Example 97 4.3.2 Numerical Approximation of Eigenfunctions 98 4.4 Kernels for Non vectorial Inputs 99 4.4.1 String Kernels 100 4.4.2 Fisher Kernels 101 4.5 Exercises 102 5 Model Selection and Adaptation of Hyperparameters 105 5.1 The Model Selection Problem 106 5.2 Bayesian Model Selection 108 5.3 Cross validation Ill 5.4 Model Selection for GP Regression . 112 5.4.1 Marginal Likelihood 112 5.4.2 Cross validation 116 5.4.3 Examples and Discussion . 118 5.5 Model Selection for GP Classification 124 * 5.5.1 Derivatives of the Marginal Likelihood for Laplace s Approximation 125 * 5.5.2 Derivatives of the Marginal Likelihood for EP 127 5.5.3 Cross validation 127 5.5.4 Example 128 5.6 Exercises 128 6 Relationships between GPs and Other Models 129 6.1 Reproducing Kernel Hilbert Spaces • 129 6.2 Regularization 132 * 6.2.1 Regularization Denned by Differential Operators 133 6.2.2 Obtaining the Regularized Solution 135 6.2.3 The Relationship of the Regularization View to Gaussian Process Prediction 135 6.3 Spline Models 136 * 6.3.1 A 1 d Gaussian Process Spline Construction 138 * 6.4 Support Vector Machines 141 6.4.1 Support Vector Classification 141 6.4.2 Support Vector Regression 145 * 6.5 Least squares Classification 146 6.5.1 Probabilistic Least squares Classification 147 Contents * 6.6 Relevance Vector Machines 149 6.7 Exercises 150 7 Theoretical Perspectives 151 7.1 The Equivalent Kernel 151 7.1.1 Some Specific Examples of Equivalent Kernels 153 * 7.2 Asymptotic Analysis 155 7.2.1 Consistency 155 7.2.2 Equivalence and Orthogonality 157 * 7.3 Average case Learning Curves 159 * 7.4 PAC Bayesian Analysis 161 7.4.1 The PAC Framework 162 7.4.2 PAC Bayesian Analysis 163 7.4.3 PAC Bayesian Analysis of GP Classification 164 7.5 Comparison with Other Supervised Learning Methods 165 * 7.6 Appendix: Learning Curve for the Ornstein Uhlenbeck Process 168 7.7 Exercises 169 8 Approximation Methods for Large Datasets 171 8.1 Reduced rank Approximations of the Gram Matrix 171 8.2 Greedy Approximation 174 8.3 Approximations for GPR with Fixed Hyperparameters 175 8.3.1 Subset of Regressors 175 8.3.2 The Nystrom Method 177 8.3.3 Subset of Datapoints 177 8.3.4 Projected Process Approximation 178 8.3.5 Bayesian Committee Machine 180 8.3.6 Iterative Solution of Linear Systems 181 8.3.7 Comparison of Approximate GPR Methods 182 8.4 Approximations for GPC with Fixed Hyperparameters 185 * 8.5 Approximating the Marginal Likelihood and its Derivatives 185 * 8.6 Appendix: Equivalence of SR and GPR Using the Nystrom Approximate Kernel 187 8.7 Exercises 187 9 Further Issues and Conclusions 189 9.1 Multiple Outputs 190 9.2 Noise Models with Dependencies 190 9.3 Non Gaussian Likelihoods 191 9.4 Derivative Observations 191 9.5 Prediction with Uncertain Inputs 192 9.6 Mixtures of Gaussian Processes 192 9.7 Global Optimization 193 9.8 Evaluation of Integrals 193 9.9 Student s t Process 194 9.10 Invarianc.es 194 9.11 Latent Variable Models 196 9.12 Conclusions and Future Directions 196 Contents Appendix A Mathematical Background 199 A.I Joint, Marginal and Conditional Probability 199 A.2 Gaussian Identities 200 A.3 Matrix Identities 201 A.3.1 Matrix Derivatives 202 A.3.2 Matrix Norms 202 A.4 Cholesky Decomposition 202 A.5 Entropy and Kullback Leibler Divergence 203 A.6 Limits 204 A.7 Measure and Integration 204 A.7.1 Lp Spaces 205 A.8 Fourier Transforms 205 A.9 Convexity 206 Appendix B Gaussian Markov Processes 207 B.I Fourier Analysis 208 B.I.I Sampling and Periodization 209 B.2 Continuous time Gaussian Markov Processes 211 B.2.1 Continuous time GMPs onl 211 B.2.2 The Solution of the Corresponding SDE on the Circle 213 B.3 Discrete time Gaussian Markov Processes 214 B.3.1 Discrete time GMPs on Z 214 B.3.2 The Solution of the Corresponding Difference Equation on P,v ¦ • 215 B.4 The Relationship Between Discrete time and Sampled Continuous time GMPs 217 B.5 Markov Processes in Higher Dimensions 218 Appendix C Datasets and Code 221 Bibliography 223 Author Index 239 Subject Index 245
any_adam_object 1
author Rasmussen, Carl Edward
author_GND (DE-588)1137889306
(DE-588)1274480272
author_facet Rasmussen, Carl Edward
author_role aut
author_sort Rasmussen, Carl Edward
author_variant c e r ce cer
building Verbundindex
bvnumber BV021552118
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274.4
callnumber-search QA274.4
callnumber-sort QA 3274.4
callnumber-subject QA - Mathematics
classification_rvk ST 300
ST 304
SK 820
classification_tum DAT 708f
MAT 605f
ctrlnum (OCoLC)61285753
(DE-599)BVBBV021552118
dewey-full 519.2/3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2/3
dewey-search 519.2/3
dewey-sort 3519.2 13
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02245nam a2200553zc 4500</leader><controlfield tag="001">BV021552118</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221202 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">060418s2006 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005053433</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262182539</subfield><subfield code="9">978-0-262-18253-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">026218253X</subfield><subfield code="9">0-262-18253-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61285753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021552118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="0">(DE-625)143653:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rasmussen, Carl Edward</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1137889306</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gaussian processes for machine learning</subfield><subfield code="c">Carl Edward Rasmussen ; Christopher K.I. Williams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass. [u.a.]</subfield><subfield code="b">MIT Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 248 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive computation and machine learning</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus gaussiens - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian processes</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Christopher K. I.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1274480272</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014768173&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014768173</subfield></datafield></record></collection>
id DE-604.BV021552118
illustrated Illustrated
indexdate 2024-12-23T19:18:35Z
institution BVB
isbn 9780262182539
026218253X
language English
lccn 2005053433
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014768173
oclc_num 61285753
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-706
DE-355
DE-BY-UBR
DE-29T
DE-83
DE-11
DE-91
DE-BY-TUM
DE-188
DE-384
DE-703
DE-739
owner_facet DE-91G
DE-BY-TUM
DE-706
DE-355
DE-BY-UBR
DE-29T
DE-83
DE-11
DE-91
DE-BY-TUM
DE-188
DE-384
DE-703
DE-739
physical XVIII, 248 S. graph. Darst.
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher MIT Press
record_format marc
series2 Adaptive computation and machine learning
spellingShingle Rasmussen, Carl Edward
Gaussian processes for machine learning
Apprentissage automatique - Modèles mathématiques
Processus gaussiens - Informatique
Datenverarbeitung
Mathematisches Modell
Gaussian processes Data processing
Machine learning Mathematical models
Gauß-Prozess (DE-588)4156111-9 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
subject_GND (DE-588)4156111-9
(DE-588)4193754-5
title Gaussian processes for machine learning
title_auth Gaussian processes for machine learning
title_exact_search Gaussian processes for machine learning
title_full Gaussian processes for machine learning Carl Edward Rasmussen ; Christopher K.I. Williams
title_fullStr Gaussian processes for machine learning Carl Edward Rasmussen ; Christopher K.I. Williams
title_full_unstemmed Gaussian processes for machine learning Carl Edward Rasmussen ; Christopher K.I. Williams
title_short Gaussian processes for machine learning
title_sort gaussian processes for machine learning
topic Apprentissage automatique - Modèles mathématiques
Processus gaussiens - Informatique
Datenverarbeitung
Mathematisches Modell
Gaussian processes Data processing
Machine learning Mathematical models
Gauß-Prozess (DE-588)4156111-9 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
topic_facet Apprentissage automatique - Modèles mathématiques
Processus gaussiens - Informatique
Datenverarbeitung
Mathematisches Modell
Gaussian processes Data processing
Machine learning Mathematical models
Gauß-Prozess
Maschinelles Lernen
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014768173&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT rasmussencarledward gaussianprocessesformachinelearning
AT williamschristopherki gaussianprocessesformachinelearning