Green chemistry and catalysis
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021547665 | ||
003 | DE-604 | ||
005 | 20071219 | ||
007 | t | ||
008 | 060411s2007 gw |||| 00||| eng d | ||
015 | |a 05,N34,0663 |2 dnb | ||
016 | 7 | |a 975834487 |2 DE-101 | |
020 | |a 9783527307159 |9 978-3-527-30715-9 | ||
024 | 3 | |a 9783527307159 | |
028 | 5 | 2 | |a 1130715 000 |
035 | |a (OCoLC)180887503 | ||
035 | |a (DE-599)BVBBV021547665 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-20 |a DE-91G |a DE-29T |a DE-19 |a DE-92 |a DE-384 |a DE-703 |a DE-634 |a DE-83 |a DE-11 |a DE-1029 | ||
082 | 0 | |a 547.215 |2 22/ger | |
084 | |a VE 7040 |0 (DE-625)147136:253 |2 rvk | ||
084 | |a VN 9200 |0 (DE-625)147637:253 |2 rvk | ||
084 | |a VN 9250 |0 (DE-625)147638:253 |2 rvk | ||
084 | |a 540 |2 sdnb | ||
084 | |a CIT 325f |2 stub | ||
084 | |a CHE 050f |2 stub | ||
100 | 1 | |a Sheldon, Roger Arthur |d 1942- |e Verfasser |0 (DE-588)122515048 |4 aut | |
245 | 1 | 0 | |a Green chemistry and catalysis |c Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2007 | |
300 | |a XIV, 433 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Catalysis | |
650 | 4 | |a Environmental chemistry |x Industrial applications | |
650 | 0 | 7 | |a Katalyse |0 (DE-588)4029921-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grüne Chemie |0 (DE-588)7563215-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Grüne Chemie |0 (DE-588)7563215-9 |D s |
689 | 0 | 1 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Arends, Isabel |d 1966- |e Verfasser |0 (DE-588)132720086 |4 aut | |
700 | 1 | |a Hanefeld, Ulf |d 1966- |e Verfasser |0 (DE-588)113692536 |4 aut | |
856 | 4 | |u http://www.gbv.de/dms/bs/toc/495791474.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014763785&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014763785 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0302/CHE 050f 2007 A 2675 |
---|---|
DE-BY-TUM_katkey | 1579138 |
DE-BY-TUM_media_number | 040030185967 |
_version_ | 1816712670248697856 |
adam_text | Contents
Preface
XI
Foreword
XIJÍ
1
Introduction:
Creen
Chemistry and Catalysis
1
1.1
Introduction
1
1.2.
E
Factors and Atom Efficiency
2
1.3
The Role of Catalysis
5
1.4
The Development of Organic Synthesis
8
1.5
Catalysis by Solid Acids and Bases
10
1.6
Catalytic Reduction
14
1.7
Catalytic Oxidation
28
1.8
Catalytic
C
-С
Bond Formation
23
1.9
The Question of Solvents: Alternative Reaction Media
27
1.10
Biocatalysis
29
1.11
Renewable Raw Materials and White Biotechnology
34
1.12
Enantioselective Catalysis
35
1.13
Risky Reagents
38
1.14
Process Integration and Catalytic Cascades
39
References
43
2
Solid Acids and Bases as Catalysts
49
2.1
Introduction
49
2.2
Solid Acid Catalysis
50
2.2.1
Acidic Clays
50
2.2.2
Zeolites and Zeotypes: Synthesis and Structure
52
2.2.3
Zeolite-catalyzed Reactions in Organic Synthesis
59
2.2.3.1
Electrophilic Aromatic Substitutions
60
2.2.3.2
Additions and Eliminations
65
2.2.3.3
Rearrangements and Isomerizations
67
2.2.3.4
Cyclizations
70
2.2.4
Solid Acids Containing Surface SOjH Functionality
71
2.2.5
Heteropoly Acids
75
Green Chemistiy and Catalysis. I. Arends, R. Sheldon, U. Hanefeld
Copyright
© 2007
WILEY-VCH
Verlag
GmbH
&
Co. KGaA,
Weinheim
ISBN:
978-3-527-30715-9
VI
Contents
2.3
Solid Base Catalysis
76
2.3.1
Anionie
Clays: Hydrotalcites
76
2.3.2
Basic Zeolites
80
2.3.3
Organic Bases Attached to Mesoporous Silicas
82
2.4
Other Approaches
85
References
87
3
Catalytic Reductions
91
3.1
Introduction
91
3.2
Heterogeneous Reduction Catalysts
92
3.2.1
General Properties
92
3.2.2
Transfer
Hydrogénation
Using Heterogeneous Catalysts
100
3.2.3
Chiral Heterogeneous Reduction Catalysts
302
3.3
Homogeneous Reduction Catalysts
104
3.3.1
Wilkinson Catalyst
104
3.3.2
Chiral Homogeneous
Hydrogénation
Catalysts and Reduction
of the C = C Double Bond
206
3.3.3
Chiral Homogeneous Catalysts and
Ketone
Hydrogénation
111
3.3.4
Imine
Hydrogénation
113
3.3.5
Transfer
Hydrogénation
using Homogeneous Catalysts
114
3.4
Biocatalytic Reductions
116
3.4.1
Introduction
216
3.4.2
Enzyme Technology in Biocatalytic Reduction
119
3.4.3
Whole Cell Technology for Biocatalytic Reduction
125
3.5
Conclusions
227
References
127
4
Catalytic Oxidations
133
4.1
Introduction
133
4.2
Mechanisms of Metal-catalyzed Oxidations:
General Considerations
134
4.2.1
Homolytic Mechanisms
236
4.2.1.1
Direct Homolytic Oxidation of Organic Substrates
237
4.2.2
Heterolytic Mechanisms
238
4.2.2.1
Catalytic Oxygen Transfer
239
4.2.3
Ligand Design in Oxidation Catalysis
242
4.2.4
Enzyme Catalyzed Oxidations
242
4.3 ■
Alkenes
247
4.3.1
Epoxidation
247
4.3.1.1
Tungsten Catalysts
249
4.3.1.2
Rhenium Catalysts
250
4.3.1.3
Ruthenium Catalysts
151
4.3.1.4
Manganese Catalysts
252
4.3.1.5
Iron Catalysts
253
4.3.1.6
Selenium and Organocatalysts
254
4.3.1.7
Hydrotalcite and Alumina Systems
156
4.3.1.8
Biocatalytic Systems
156
4.3.2
Vicinal Dihydroxylation
156
4.3.3
Oxidative Cleavage of Olefms
158
4.3.4
Oxidative Ketonization
159
4.3.5
Allylic Oxidations
161
4.4
Alkanes and Alkylaromatics
162
4.4.1
Oxidation of Alkanes
163
4.4.2
Oxidation of Aromatic Side Chains
165
4.4.3
Aromatic Ring Oxidation
168
4.5
Oxygen-containing Compounds
170
4.5.1
Oxidation of Alcohols
170
4.5.1.1
Ruthenium Catalysts
172
4.5.1.2
Palladium-catalyzed Oxidations with O2
176
4.5.1.3
Gold Catalysts
178
4.5.1.4
Copper Catalysts
179
4.5.1.5
Other Metals as Catalysts for Oxidation with O2
181
4.5.1.6
Catalytic Oxidation of Alcohols with Hydrogen Peroxide
182
4.5.1.7
Oxoammonium Ions in Alcohol Oxidation
183
4.5.1.8
Biocatalytic Oxidation of Alcohols
184
4.5.2
Oxidative Cleavage of 1,2-Diols
185
4.5.3
Carbohydrate Oxidation
185
4.5.4
Oxidation of Aldehydes and Ketones
186
4.5.4.1
Baeyer-
Villiger
Oxidation
187
4.5.5
Oxidation of Phenols
190
4.5.6
Oxidation of Ethers
191
4.6
Heteroatom
Oxidation
192
4.6.1
Oxidation of Amines
192
4.6.1.1
Primary Amines
192
4.6.1.2
Secondary Amines
193
4.6.1.3
Tertiary Amines
193
4.6.1.4
Amides
194
4.6.2
Sulfoxidation
194
4.7
Asymmetric Oxidation
195
4.7.1
Asymmetric Epoxidation of Olefms
196
4.7.2
Asymmetric Dihydroxylation of Olefms
204
4.7.3
Asymmetric Sulfoxidation
207
4.7
A Asymmetric Baeyer-Villiger Oxidation
208
4.5
Conclusion
211
References
212
5
Catalytic Carbon-Carbon Bond Formation
223
5.1
Introduction
223
5.2
Enzymes for Carbon-Carbon Bond Formation
223
5.2.1
Enzymatic Synthesis of Cyanohydrins
224
I
5.2.1.1
Hydroxynitrile Lyases
225
5.2.1.2
Lipase-based Dynamic Kinetic Resolution
228
5.2.2
Enzymatic Synthesis of a-Hydroxyketones (Acyloins)
229
5.2.3
Enzymatic Synthesis of a-Hydroxy Acids
234
5.2.4
Enzymatic Synthesis of Aldols
(ß-Hydroxy Carbonyl
Compounds)
235
5.2.4.1
DHAP-dependent Aldolases
236
5.2.4.2 .
PEP- and Pyruvate-dependent Aldolases
241
5.2.4.3
Glycine-dependent Aldolases
242
5.2.4.4
Acetaldehyde-dependent Aldolases
242
5.2.5
Enzymatic Synthesis of
ß-Hydroxynitriles 244
5.3
Transition Metal Catalysis
245
5.3.1
Carbon Monoxide as a Building Block
245
5.3.1.1
Carbonylation of R-X (CO Insertion/R-migration )
245
5.3.1.2
Aminocarbonylation
249
5.3.1.3
Hydroformylation or Oxo Reaction
250
5.3.1.4
Hydroaminomethylation
251
5.3.1.5
Methyl Methacrylate via Carbonylation Reactions
253
5.3.2
Heck-type Reactions
254
5.3.2.1
Heck Reaction
256
5.3.2.2
Suzuki and Sonogashira Reaction
257
5.3.3
Metathesis
258
5.3.3.1
Metathesis involving Propylene
259
5.3.3.2
Ring-opening Metathesis Polymerization (ROMP)
259
5.3.3.3
Ring-closing Metathesis (RCM)
260
5.4
Conclusion and Outlook
261
References
261
6
Hydrolysis
265
6.1
Introduction
265
6.1.1
Stereoselectivity of Hydrolases
266
6.1.2
Hydrolase-based Preparation of Enantiopure Compounds
268
6.1.2.1
Kinetic Resolutions
268
6.1.2.2
Dynamic Kinetic Resolutions
269
6.1.2.3
Kinetic Resolutions Combined with Inversions
270
6.1.2.4
Hydrolysis of Symmetric Molecules and the meso-trick
271
6.2 ,
Hydrolysis of Esters
271
6.2.1
Kinetic Resolutions of Esters
272
6.2.2
Dynamic Kinetic Resolutions of Esters
274
6.2.3
Kinetic Resolutions of Esters Combined with Inversions
276
6.2.4
Hydrolysis of Symmetric Esters and the meso-trick
278
6.3
Hydrolysis of Amides
279
6.3.1
Production of
Amino
Acids by (Dynamic) Kinetic Resolution
280
6.3.1.1
The Acylase Process
280
6.3.1.2
The Amidase Process
281
6.3.1.3
The Hydantoinase Process
282
6.3.1.4
Cysteine
283
6.3.2
Enzyme-catalysed Hydrolysis of Amides
283
6.3.3
Enzyme-catalysed Deprotection of Amines
285
6.4
Hydrolysis of Nitriles
286
6.4.1
Nitrilases
286
6.4.2
Nitrile Hydratases
287
6.5
Conclusion and Outlook
290
References
290
7
Catalysis in Novel Reaction Media
295
7.1
Introduction
295
7.1.1
Why use a solvent?
295
7.1.2
Choice of Solvent
296
7.1.3
Alternative Reaction Media and Multiphasic Systems
298
7.2
Two Immiscible Organic Solvents
299
7.3
Aqueous Biphasic Catalysis
300
7.3.1
Olefin Hydroformylation
302
7.3.2
Hydrogénation
304
7.3.3
Carbonylations
306
7.3.4
Other
C
-С
Bond Forming Reactions
307
7.3.5
Oxidations
309
7.4
Fluorous Biphasic Catalysis
309
7.4.1
Olefin
Hydroformylation
310
7.4.2
Other Reactions
311
7.5
Supercritical Carbon Dioxide
323
7.5.1
Supercritical Fluids
313
7.5.2
Supercritical Carbon Dioxide 3J4
7.5.3
Hydrogénation
314
7.5.4
Oxidation
316
7.5.5
Biocatalysis
317
7.6
Ionic Liquids
318
7.7
Biphasic Systems with Supercritical Carbon Dioxide
322
7.8
Thermoregulated Biphasic Catalysis
323
7.9
Conclusions and Prospects
323
References
324
8
Chemicals from Renewable Raw Materials
329
8.1
Introduction
329
8.2
Carbohydrates
332
8.2.1
Chemicals from Glucose via Fermentation
333
8.2.2
Ethanol
335
8.2.2.1
Microbial Production of
Ethanol
338
8.2.2.2
Green Aspects
339
8.2.3
Lactic Acid
340
Contents
8.2.4 1,3-Propanediol 342
8.2.5 B-Hydroxypropanoic
Acid
346
8.2.6
Synthesizing Aromatics in Nature s Way
347
8.2.7
Aromatic
α
-Amino
Acids
349
8.2.7
Indigo: the Natural Color
353
8.2.8
Pantothenic Acid
355
8.2.9
The /S-Lactam Building Block 7-Aminodesacetoxycephalosporamc
Acid
358
8.2.9
Riboflavin
361
8.3
Chemical and Chemoenzymatic Transformations of Carbohydrates
into Fine Chemicals and Chiral Building Blocks
363
8.3.1
Ascorbic Acid
364
8.3.2
Carbohydrate-derived C3 and C4 Building Blocks
368
8.3.3
5-Hydroxyrnethylfurfural
and Levulinic Acid
370
8.4
Fats and Oils
372
8.4.1
Biodiesel
373
8.4.2
Fatty Acid Esters
374
8.5
Terpenes
375
8.6
Renewable Raw Materials as Catalysts
378
8.7
Green Polymers from Renewable Raw Materials
379
8.8
Concluding Remarks
380
References
380
9
Process Integration and Cascade Catalysis
389
9.1
Introduction
389
9.2
Dynamic Kinetic Resolutions by Enzymes Coupled
with Metal Catalysts
390
9.3
Combination of Asymmetric
Hydrogénation
with Enzymatic Hydrolysis
401
9.4
Catalyst Recovery and Recycling
402
9.5
Immobilization of Enzymes: Cross-linked Enzyme Aggregates
(CLEAs)
405
9.6
Conclusions and Prospects
406
References
407
10
Epilogue: Future Outlook
409
10.1
Green Chemistry: The Road to Sustamability
409
10.2
Catalysis and Green Chemistry
410
10.3
The Medium is the Message
412
10.4
Metabolic Engineering and Cascade Catalysis
413
10.5
Concluding Remarks
413
References
414
Subject Index
415
|
adam_txt |
Contents
Preface
XI
Foreword
XIJÍ
1
Introduction:
Creen
Chemistry and Catalysis
1
1.1
Introduction
1
1.2.
E
Factors and Atom Efficiency
2
1.3
The Role of Catalysis
5
1.4
The Development of Organic Synthesis
8
1.5
Catalysis by Solid Acids and Bases
10
1.6
Catalytic Reduction
14
1.7
Catalytic Oxidation
28
1.8
Catalytic
C
-С
Bond Formation
23
1.9
The Question of Solvents: Alternative Reaction Media
27
1.10
Biocatalysis
29
1.11
Renewable Raw Materials and White Biotechnology
34
1.12
Enantioselective Catalysis
35
1.13
Risky Reagents
38
1.14
Process Integration and Catalytic Cascades
39
References
43
2
Solid Acids and Bases as Catalysts
49
2.1
Introduction
49
2.2
Solid Acid Catalysis
50
2.2.1
Acidic Clays
50
2.2.2
Zeolites and Zeotypes: Synthesis and Structure
52
2.2.3
Zeolite-catalyzed Reactions in Organic Synthesis
59
2.2.3.1
Electrophilic Aromatic Substitutions
60
2.2.3.2
Additions and Eliminations
65
2.2.3.3
Rearrangements and Isomerizations
67
2.2.3.4
Cyclizations
70
2.2.4
Solid Acids Containing Surface SOjH Functionality
71
2.2.5
Heteropoly Acids
75
Green Chemistiy and Catalysis. I. Arends, R. Sheldon, U. Hanefeld
Copyright
© 2007
WILEY-VCH
Verlag
GmbH
&
Co. KGaA,
Weinheim
ISBN:
978-3-527-30715-9
VI
Contents
2.3
Solid Base Catalysis
76
2.3.1
Anionie
Clays: Hydrotalcites
76
2.3.2
Basic Zeolites
80
2.3.3
Organic Bases Attached to Mesoporous Silicas
82
2.4
Other Approaches
85
References
87
3
Catalytic Reductions
91
3.1 '
Introduction
91
3.2
Heterogeneous Reduction Catalysts
92
3.2.1
General Properties
92
3.2.2
Transfer
Hydrogénation
Using Heterogeneous Catalysts
100
3.2.3
Chiral Heterogeneous Reduction Catalysts
302
3.3
Homogeneous Reduction Catalysts
104
3.3.1
Wilkinson Catalyst
104
3.3.2
Chiral Homogeneous
Hydrogénation
Catalysts and Reduction
of the C = C Double Bond
206
3.3.3
Chiral Homogeneous Catalysts and
Ketone
Hydrogénation
111
3.3.4
Imine
Hydrogénation
113
3.3.5
Transfer
Hydrogénation
using Homogeneous Catalysts
114
3.4
Biocatalytic Reductions
116
3.4.1
Introduction
216
3.4.2
Enzyme Technology in Biocatalytic Reduction
119
3.4.3
Whole Cell Technology for Biocatalytic Reduction
125
3.5
Conclusions
227
References
127
4
Catalytic Oxidations
133
4.1
Introduction
133
4.2
Mechanisms of Metal-catalyzed Oxidations:
General Considerations
134
4.2.1
Homolytic Mechanisms
236
4.2.1.1
Direct Homolytic Oxidation of Organic Substrates
237
4.2.2
Heterolytic Mechanisms
238
4.2.2.1
Catalytic Oxygen Transfer
239
4.2.3
Ligand Design in Oxidation Catalysis
242
4.2.4
Enzyme Catalyzed Oxidations
242
4.3 ■
Alkenes
247
4.3.1
Epoxidation
247
4.3.1.1
Tungsten Catalysts
249
4.3.1.2
Rhenium Catalysts
250
4.3.1.3
Ruthenium Catalysts
151
4.3.1.4
Manganese Catalysts
252
4.3.1.5
Iron Catalysts
253
4.3.1.6
Selenium and Organocatalysts
254
4.3.1.7
Hydrotalcite and Alumina Systems
156
4.3.1.8
Biocatalytic Systems
156
4.3.2
Vicinal Dihydroxylation
156
4.3.3
Oxidative Cleavage of Olefms
158
4.3.4
Oxidative Ketonization
159
4.3.5
Allylic Oxidations
161
4.4
Alkanes and Alkylaromatics
162
4.4.1
Oxidation of Alkanes
163
4.4.2
Oxidation of Aromatic Side Chains
165
4.4.3
Aromatic Ring Oxidation
168
4.5
Oxygen-containing Compounds
170
4.5.1
Oxidation of Alcohols
170
4.5.1.1
Ruthenium Catalysts
172
4.5.1.2
Palladium-catalyzed Oxidations with O2
176
4.5.1.3
Gold Catalysts
178
4.5.1.4
Copper Catalysts
179
4.5.1.5
Other Metals as Catalysts for Oxidation with O2
181
4.5.1.6
Catalytic Oxidation of Alcohols with Hydrogen Peroxide
182
4.5.1.7
Oxoammonium Ions in Alcohol Oxidation
183
4.5.1.8
Biocatalytic Oxidation of Alcohols
184
4.5.2
Oxidative Cleavage of 1,2-Diols
185
4.5.3
Carbohydrate Oxidation
185
4.5.4
Oxidation of Aldehydes and Ketones
186
4.5.4.1
Baeyer-
Villiger
Oxidation
187
4.5.5
Oxidation of Phenols
190
4.5.6
Oxidation of Ethers
191
4.6
Heteroatom
Oxidation
192
4.6.1
Oxidation of Amines
192
4.6.1.1
Primary Amines
192
4.6.1.2
Secondary Amines
193
4.6.1.3
Tertiary Amines
193
4.6.1.4
Amides
194
4.6.2
Sulfoxidation
194
4.7
Asymmetric Oxidation
195
4.7.1
Asymmetric Epoxidation of Olefms
196
4.7.2
Asymmetric Dihydroxylation of Olefms
204
4.7.3
Asymmetric Sulfoxidation
207
4.7
A Asymmetric Baeyer-Villiger Oxidation
208
4.5
Conclusion
211
References
212
5
Catalytic Carbon-Carbon Bond Formation
223
5.1
Introduction
223
5.2
Enzymes for Carbon-Carbon Bond Formation
223
5.2.1
Enzymatic Synthesis of Cyanohydrins
224
I
5.2.1.1
Hydroxynitrile Lyases
225
5.2.1.2
Lipase-based Dynamic Kinetic Resolution
228
5.2.2
Enzymatic Synthesis of a-Hydroxyketones (Acyloins)
229
5.2.3
Enzymatic Synthesis of a-Hydroxy Acids
234
5.2.4
Enzymatic Synthesis of Aldols
(ß-Hydroxy Carbonyl
Compounds)
235
5.2.4.1
DHAP-dependent Aldolases
236
5.2.4.2 .
PEP- and Pyruvate-dependent Aldolases
241
5.2.4.3
Glycine-dependent Aldolases
242
5.2.4.4
Acetaldehyde-dependent Aldolases
242
5.2.5
Enzymatic Synthesis of
ß-Hydroxynitriles 244
5.3
Transition Metal Catalysis
245
5.3.1
Carbon Monoxide as a Building Block
245
5.3.1.1
Carbonylation of R-X (CO "Insertion/R-migration")
245
5.3.1.2
Aminocarbonylation
249
5.3.1.3
Hydroformylation or "Oxo" Reaction
250
5.3.1.4
Hydroaminomethylation
251
5.3.1.5
Methyl Methacrylate via Carbonylation Reactions
253
5.3.2
Heck-type Reactions
254
5.3.2.1
Heck Reaction
256
5.3.2.2
Suzuki and Sonogashira Reaction
257
5.3.3
Metathesis
258
5.3.3.1 '
Metathesis involving Propylene
259
5.3.3.2
Ring-opening Metathesis Polymerization (ROMP)
259
5.3.3.3
Ring-closing Metathesis (RCM)
260
5.4
Conclusion and Outlook
261
References
261
6
Hydrolysis
265
6.1
Introduction
265
6.1.1
Stereoselectivity of Hydrolases
266
6.1.2
Hydrolase-based Preparation of Enantiopure Compounds
268
6.1.2.1
Kinetic Resolutions
268
6.1.2.2
Dynamic Kinetic Resolutions
269
6.1.2.3
Kinetic Resolutions Combined with Inversions
270
6.1.2.4
Hydrolysis of Symmetric Molecules and the "meso-trick"
271
6.2 ,
Hydrolysis of Esters
271
6.2.1
Kinetic Resolutions of Esters
272
6.2.2
Dynamic Kinetic Resolutions of Esters
274
6.2.3
Kinetic Resolutions of Esters Combined with Inversions
276
6.2.4
Hydrolysis of Symmetric Esters and the "meso-trick"
278
6.3
Hydrolysis of Amides
279
6.3.1
Production of
Amino
Acids by (Dynamic) Kinetic Resolution
280
6.3.1.1
The Acylase Process
280
6.3.1.2
The Amidase Process
281
6.3.1.3
The Hydantoinase Process
282
6.3.1.4
Cysteine
283
6.3.2
Enzyme-catalysed Hydrolysis of Amides
283
6.3.3
Enzyme-catalysed Deprotection of Amines
285
6.4
Hydrolysis of Nitriles
286
6.4.1
Nitrilases
286
6.4.2
Nitrile Hydratases
287
6.5
Conclusion and Outlook
290
References
290
7
Catalysis in Novel Reaction Media
295
7.1
Introduction
295
7.1.1
Why use a solvent?
295
7.1.2
Choice of Solvent
296
7.1.3
Alternative Reaction Media and Multiphasic Systems
298
7.2
Two Immiscible Organic Solvents
299
7.3
Aqueous Biphasic Catalysis
300
7.3.1
Olefin Hydroformylation
302
7.3.2
Hydrogénation
304
7.3.3
Carbonylations
306
7.3.4
Other
C
-С
Bond Forming Reactions
307
7.3.5
Oxidations
309
7.4
Fluorous Biphasic Catalysis
309
7.4.1
Olefin
Hydroformylation
310
7.4.2
Other Reactions
311
7.5
Supercritical Carbon Dioxide
323
7.5.1
Supercritical Fluids
313
7.5.2
Supercritical Carbon Dioxide 3J4
7.5.3
Hydrogénation
314
7.5.4
Oxidation
316
7.5.5
Biocatalysis
317
7.6
Ionic Liquids
318
7.7
Biphasic Systems with Supercritical Carbon Dioxide
322
7.8
Thermoregulated Biphasic Catalysis
323
7.9
Conclusions and Prospects
323
References
324
8
Chemicals from Renewable Raw Materials
329
8.1
Introduction
329
8.2
Carbohydrates
332
8.2.1
Chemicals from Glucose via Fermentation
333
8.2.2
Ethanol
335
8.2.2.1
Microbial Production of
Ethanol
338
8.2.2.2
Green Aspects
339
8.2.3
Lactic Acid
340
Contents
8.2.4 1,3-Propanediol 342
8.2.5 B-Hydroxypropanoic
Acid
346
8.2.6
Synthesizing Aromatics in Nature's Way
347
8.2.7
Aromatic
α
-Amino
Acids
349
8.2.7
Indigo: the Natural Color
353
8.2.8
Pantothenic Acid
355
8.2.9
The /S-Lactam Building Block 7-Aminodesacetoxycephalosporamc
Acid
358
8.2.9
Riboflavin
361
8.3
Chemical and Chemoenzymatic Transformations of Carbohydrates
into Fine Chemicals and Chiral Building Blocks
363
8.3.1
Ascorbic Acid
364
8.3.2
Carbohydrate-derived C3 and C4 Building Blocks
368
8.3.3
5-Hydroxyrnethylfurfural
and Levulinic Acid
370
8.4
Fats and Oils
372
8.4.1
Biodiesel
373
8.4.2
Fatty Acid Esters
374
8.5
Terpenes
375
8.6
Renewable Raw Materials as Catalysts
378
8.7
Green Polymers from Renewable Raw Materials
379
8.8
Concluding Remarks
380
References
380
9
Process Integration and Cascade Catalysis
389
9.1
Introduction
389
9.2
Dynamic Kinetic Resolutions by Enzymes Coupled
with Metal Catalysts
390
9.3
Combination of Asymmetric
Hydrogénation
with Enzymatic Hydrolysis
401
9.4
Catalyst Recovery and Recycling
402
9.5
Immobilization of Enzymes: Cross-linked Enzyme Aggregates
(CLEAs)
405
9.6
Conclusions and Prospects
406
References
407
10
Epilogue: Future Outlook
409
10.1
Green Chemistry: The Road to Sustamability
409
10.2
Catalysis and Green Chemistry
410
10.3
The Medium is the Message
412
10.4
Metabolic Engineering and Cascade Catalysis
413
10.5
Concluding Remarks
413
References
414
Subject Index
415 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Sheldon, Roger Arthur 1942- Arends, Isabel 1966- Hanefeld, Ulf 1966- |
author_GND | (DE-588)122515048 (DE-588)132720086 (DE-588)113692536 |
author_facet | Sheldon, Roger Arthur 1942- Arends, Isabel 1966- Hanefeld, Ulf 1966- |
author_role | aut aut aut |
author_sort | Sheldon, Roger Arthur 1942- |
author_variant | r a s ra ras i a ia u h uh |
building | Verbundindex |
bvnumber | BV021547665 |
classification_rvk | VE 7040 VN 9200 VN 9250 |
classification_tum | CIT 325f CHE 050f |
ctrlnum | (OCoLC)180887503 (DE-599)BVBBV021547665 |
dewey-full | 547.215 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 547 - Organic chemistry |
dewey-raw | 547.215 |
dewey-search | 547.215 |
dewey-sort | 3547.215 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie Chemie-Ingenieurwesen |
discipline_str_mv | Chemie / Pharmazie Chemie Chemie-Ingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02070nam a2200529 c 4500</leader><controlfield tag="001">BV021547665</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060411s2007 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N34,0663</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">975834487</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527307159</subfield><subfield code="9">978-3-527-30715-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527307159</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1130715 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180887503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021547665</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1029</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.215</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 7040</subfield><subfield code="0">(DE-625)147136:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9200</subfield><subfield code="0">(DE-625)147637:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9250</subfield><subfield code="0">(DE-625)147638:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 325f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sheldon, Roger Arthur</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122515048</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green chemistry and catalysis</subfield><subfield code="c">Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 433 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental chemistry</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arends, Isabel</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132720086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanefeld, Ulf</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113692536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/bs/toc/495791474.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014763785&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014763785</subfield></datafield></record></collection> |
id | DE-604.BV021547665 |
illustrated | Not Illustrated |
index_date | 2024-07-02T14:30:23Z |
indexdate | 2024-11-25T17:26:05Z |
institution | BVB |
isbn | 9783527307159 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014763785 |
oclc_num | 180887503 |
open_access_boolean | |
owner | DE-20 DE-91G DE-BY-TUM DE-29T DE-19 DE-BY-UBM DE-92 DE-384 DE-703 DE-634 DE-83 DE-11 DE-1029 |
owner_facet | DE-20 DE-91G DE-BY-TUM DE-29T DE-19 DE-BY-UBM DE-92 DE-384 DE-703 DE-634 DE-83 DE-11 DE-1029 |
physical | XIV, 433 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | WILEY-VCH |
record_format | marc |
spellingShingle | Sheldon, Roger Arthur 1942- Arends, Isabel 1966- Hanefeld, Ulf 1966- Green chemistry and catalysis Catalysis Environmental chemistry Industrial applications Katalyse (DE-588)4029921-1 gnd Grüne Chemie (DE-588)7563215-9 gnd |
subject_GND | (DE-588)4029921-1 (DE-588)7563215-9 |
title | Green chemistry and catalysis |
title_auth | Green chemistry and catalysis |
title_exact_search | Green chemistry and catalysis |
title_exact_search_txtP | Green chemistry and catalysis |
title_full | Green chemistry and catalysis Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld |
title_fullStr | Green chemistry and catalysis Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld |
title_full_unstemmed | Green chemistry and catalysis Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld |
title_short | Green chemistry and catalysis |
title_sort | green chemistry and catalysis |
topic | Catalysis Environmental chemistry Industrial applications Katalyse (DE-588)4029921-1 gnd Grüne Chemie (DE-588)7563215-9 gnd |
topic_facet | Catalysis Environmental chemistry Industrial applications Katalyse Grüne Chemie |
url | http://www.gbv.de/dms/bs/toc/495791474.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014763785&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sheldonrogerarthur greenchemistryandcatalysis AT arendsisabel greenchemistryandcatalysis AT hanefeldulf greenchemistryandcatalysis |