Green chemistry and catalysis

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sheldon, Roger Arthur 1942- (VerfasserIn), Arends, Isabel 1966- (VerfasserIn), Hanefeld, Ulf 1966- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Weinheim WILEY-VCH 2007
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV021547665
003 DE-604
005 20071219
007 t
008 060411s2007 gw |||| 00||| eng d
015 |a 05,N34,0663  |2 dnb 
016 7 |a 975834487  |2 DE-101 
020 |a 9783527307159  |9 978-3-527-30715-9 
024 3 |a 9783527307159 
028 5 2 |a 1130715 000 
035 |a (OCoLC)180887503 
035 |a (DE-599)BVBBV021547665 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BW 
049 |a DE-20  |a DE-91G  |a DE-29T  |a DE-19  |a DE-92  |a DE-384  |a DE-703  |a DE-634  |a DE-83  |a DE-11  |a DE-1029 
082 0 |a 547.215  |2 22/ger 
084 |a VE 7040  |0 (DE-625)147136:253  |2 rvk 
084 |a VN 9200  |0 (DE-625)147637:253  |2 rvk 
084 |a VN 9250  |0 (DE-625)147638:253  |2 rvk 
084 |a 540  |2 sdnb 
084 |a CIT 325f  |2 stub 
084 |a CHE 050f  |2 stub 
100 1 |a Sheldon, Roger Arthur  |d 1942-  |e Verfasser  |0 (DE-588)122515048  |4 aut 
245 1 0 |a Green chemistry and catalysis  |c Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld 
264 1 |a Weinheim  |b WILEY-VCH  |c 2007 
300 |a XIV, 433 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Catalysis 
650 4 |a Environmental chemistry  |x Industrial applications 
650 0 7 |a Katalyse  |0 (DE-588)4029921-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Grüne Chemie  |0 (DE-588)7563215-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Grüne Chemie  |0 (DE-588)7563215-9  |D s 
689 0 1 |a Katalyse  |0 (DE-588)4029921-1  |D s 
689 0 |5 DE-604 
700 1 |a Arends, Isabel  |d 1966-  |e Verfasser  |0 (DE-588)132720086  |4 aut 
700 1 |a Hanefeld, Ulf  |d 1966-  |e Verfasser  |0 (DE-588)113692536  |4 aut 
856 4 |u http://www.gbv.de/dms/bs/toc/495791474.pdf  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Augsburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014763785&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-014763785 

Datensatz im Suchindex

DE-BY-TUM_call_number 0302/CHE 050f 2007 A 2675
DE-BY-TUM_katkey 1579138
DE-BY-TUM_media_number 040030185967
_version_ 1816712670248697856
adam_text Contents Preface XI Foreword XIJÍ 1 Introduction: Creen Chemistry and Catalysis 1 1.1 Introduction 1 1.2. E Factors and Atom Efficiency 2 1.3 The Role of Catalysis 5 1.4 The Development of Organic Synthesis 8 1.5 Catalysis by Solid Acids and Bases 10 1.6 Catalytic Reduction 14 1.7 Catalytic Oxidation 28 1.8 Catalytic C -С Bond Formation 23 1.9 The Question of Solvents: Alternative Reaction Media 27 1.10 Biocatalysis 29 1.11 Renewable Raw Materials and White Biotechnology 34 1.12 Enantioselective Catalysis 35 1.13 Risky Reagents 38 1.14 Process Integration and Catalytic Cascades 39 References 43 2 Solid Acids and Bases as Catalysts 49 2.1 Introduction 49 2.2 Solid Acid Catalysis 50 2.2.1 Acidic Clays 50 2.2.2 Zeolites and Zeotypes: Synthesis and Structure 52 2.2.3 Zeolite-catalyzed Reactions in Organic Synthesis 59 2.2.3.1 Electrophilic Aromatic Substitutions 60 2.2.3.2 Additions and Eliminations 65 2.2.3.3 Rearrangements and Isomerizations 67 2.2.3.4 Cyclizations 70 2.2.4 Solid Acids Containing Surface SOjH Functionality 71 2.2.5 Heteropoly Acids 75 Green Chemistiy and Catalysis. I. Arends, R. Sheldon, U. Hanefeld Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-30715-9 VI Contents 2.3 Solid Base Catalysis 76 2.3.1 Anionie Clays: Hydrotalcites 76 2.3.2 Basic Zeolites 80 2.3.3 Organic Bases Attached to Mesoporous Silicas 82 2.4 Other Approaches 85 References 87 3 Catalytic Reductions 91 3.1 Introduction 91 3.2 Heterogeneous Reduction Catalysts 92 3.2.1 General Properties 92 3.2.2 Transfer Hydrogénation Using Heterogeneous Catalysts 100 3.2.3 Chiral Heterogeneous Reduction Catalysts 302 3.3 Homogeneous Reduction Catalysts 104 3.3.1 Wilkinson Catalyst 104 3.3.2 Chiral Homogeneous Hydrogénation Catalysts and Reduction of the C = C Double Bond 206 3.3.3 Chiral Homogeneous Catalysts and Ketone Hydrogénation 111 3.3.4 Imine Hydrogénation 113 3.3.5 Transfer Hydrogénation using Homogeneous Catalysts 114 3.4 Biocatalytic Reductions 116 3.4.1 Introduction 216 3.4.2 Enzyme Technology in Biocatalytic Reduction 119 3.4.3 Whole Cell Technology for Biocatalytic Reduction 125 3.5 Conclusions 227 References 127 4 Catalytic Oxidations 133 4.1 Introduction 133 4.2 Mechanisms of Metal-catalyzed Oxidations: General Considerations 134 4.2.1 Homolytic Mechanisms 236 4.2.1.1 Direct Homolytic Oxidation of Organic Substrates 237 4.2.2 Heterolytic Mechanisms 238 4.2.2.1 Catalytic Oxygen Transfer 239 4.2.3 Ligand Design in Oxidation Catalysis 242 4.2.4 Enzyme Catalyzed Oxidations 242 4.3 ■ Alkenes 247 4.3.1 Epoxidation 247 4.3.1.1 Tungsten Catalysts 249 4.3.1.2 Rhenium Catalysts 250 4.3.1.3 Ruthenium Catalysts 151 4.3.1.4 Manganese Catalysts 252 4.3.1.5 Iron Catalysts 253 4.3.1.6 Selenium and Organocatalysts 254 4.3.1.7 Hydrotalcite and Alumina Systems 156 4.3.1.8 Biocatalytic Systems 156 4.3.2 Vicinal Dihydroxylation 156 4.3.3 Oxidative Cleavage of Olefms 158 4.3.4 Oxidative Ketonization 159 4.3.5 Allylic Oxidations 161 4.4 Alkanes and Alkylaromatics 162 4.4.1 Oxidation of Alkanes 163 4.4.2 Oxidation of Aromatic Side Chains 165 4.4.3 Aromatic Ring Oxidation 168 4.5 Oxygen-containing Compounds 170 4.5.1 Oxidation of Alcohols 170 4.5.1.1 Ruthenium Catalysts 172 4.5.1.2 Palladium-catalyzed Oxidations with O2 176 4.5.1.3 Gold Catalysts 178 4.5.1.4 Copper Catalysts 179 4.5.1.5 Other Metals as Catalysts for Oxidation with O2 181 4.5.1.6 Catalytic Oxidation of Alcohols with Hydrogen Peroxide 182 4.5.1.7 Oxoammonium Ions in Alcohol Oxidation 183 4.5.1.8 Biocatalytic Oxidation of Alcohols 184 4.5.2 Oxidative Cleavage of 1,2-Diols 185 4.5.3 Carbohydrate Oxidation 185 4.5.4 Oxidation of Aldehydes and Ketones 186 4.5.4.1 Baeyer- Villiger Oxidation 187 4.5.5 Oxidation of Phenols 190 4.5.6 Oxidation of Ethers 191 4.6 Heteroatom Oxidation 192 4.6.1 Oxidation of Amines 192 4.6.1.1 Primary Amines 192 4.6.1.2 Secondary Amines 193 4.6.1.3 Tertiary Amines 193 4.6.1.4 Amides 194 4.6.2 Sulfoxidation 194 4.7 Asymmetric Oxidation 195 4.7.1 Asymmetric Epoxidation of Olefms 196 4.7.2 Asymmetric Dihydroxylation of Olefms 204 4.7.3 Asymmetric Sulfoxidation 207 4.7 A Asymmetric Baeyer-Villiger Oxidation 208 4.5 Conclusion 211 References 212 5 Catalytic Carbon-Carbon Bond Formation 223 5.1 Introduction 223 5.2 Enzymes for Carbon-Carbon Bond Formation 223 5.2.1 Enzymatic Synthesis of Cyanohydrins 224 I 5.2.1.1 Hydroxynitrile Lyases 225 5.2.1.2 Lipase-based Dynamic Kinetic Resolution 228 5.2.2 Enzymatic Synthesis of a-Hydroxyketones (Acyloins) 229 5.2.3 Enzymatic Synthesis of a-Hydroxy Acids 234 5.2.4 Enzymatic Synthesis of Aldols (ß-Hydroxy Carbonyl Compounds) 235 5.2.4.1 DHAP-dependent Aldolases 236 5.2.4.2 . PEP- and Pyruvate-dependent Aldolases 241 5.2.4.3 Glycine-dependent Aldolases 242 5.2.4.4 Acetaldehyde-dependent Aldolases 242 5.2.5 Enzymatic Synthesis of ß-Hydroxynitriles 244 5.3 Transition Metal Catalysis 245 5.3.1 Carbon Monoxide as a Building Block 245 5.3.1.1 Carbonylation of R-X (CO Insertion/R-migration ) 245 5.3.1.2 Aminocarbonylation 249 5.3.1.3 Hydroformylation or Oxo Reaction 250 5.3.1.4 Hydroaminomethylation 251 5.3.1.5 Methyl Methacrylate via Carbonylation Reactions 253 5.3.2 Heck-type Reactions 254 5.3.2.1 Heck Reaction 256 5.3.2.2 Suzuki and Sonogashira Reaction 257 5.3.3 Metathesis 258 5.3.3.1 Metathesis involving Propylene 259 5.3.3.2 Ring-opening Metathesis Polymerization (ROMP) 259 5.3.3.3 Ring-closing Metathesis (RCM) 260 5.4 Conclusion and Outlook 261 References 261 6 Hydrolysis 265 6.1 Introduction 265 6.1.1 Stereoselectivity of Hydrolases 266 6.1.2 Hydrolase-based Preparation of Enantiopure Compounds 268 6.1.2.1 Kinetic Resolutions 268 6.1.2.2 Dynamic Kinetic Resolutions 269 6.1.2.3 Kinetic Resolutions Combined with Inversions 270 6.1.2.4 Hydrolysis of Symmetric Molecules and the meso-trick 271 6.2 , Hydrolysis of Esters 271 6.2.1 Kinetic Resolutions of Esters 272 6.2.2 Dynamic Kinetic Resolutions of Esters 274 6.2.3 Kinetic Resolutions of Esters Combined with Inversions 276 6.2.4 Hydrolysis of Symmetric Esters and the meso-trick 278 6.3 Hydrolysis of Amides 279 6.3.1 Production of Amino Acids by (Dynamic) Kinetic Resolution 280 6.3.1.1 The Acylase Process 280 6.3.1.2 The Amidase Process 281 6.3.1.3 The Hydantoinase Process 282 6.3.1.4 Cysteine 283 6.3.2 Enzyme-catalysed Hydrolysis of Amides 283 6.3.3 Enzyme-catalysed Deprotection of Amines 285 6.4 Hydrolysis of Nitriles 286 6.4.1 Nitrilases 286 6.4.2 Nitrile Hydratases 287 6.5 Conclusion and Outlook 290 References 290 7 Catalysis in Novel Reaction Media 295 7.1 Introduction 295 7.1.1 Why use a solvent? 295 7.1.2 Choice of Solvent 296 7.1.3 Alternative Reaction Media and Multiphasic Systems 298 7.2 Two Immiscible Organic Solvents 299 7.3 Aqueous Biphasic Catalysis 300 7.3.1 Olefin Hydroformylation 302 7.3.2 Hydrogénation 304 7.3.3 Carbonylations 306 7.3.4 Other C -С Bond Forming Reactions 307 7.3.5 Oxidations 309 7.4 Fluorous Biphasic Catalysis 309 7.4.1 Olefin Hydroformylation 310 7.4.2 Other Reactions 311 7.5 Supercritical Carbon Dioxide 323 7.5.1 Supercritical Fluids 313 7.5.2 Supercritical Carbon Dioxide 3J4 7.5.3 Hydrogénation 314 7.5.4 Oxidation 316 7.5.5 Biocatalysis 317 7.6 Ionic Liquids 318 7.7 Biphasic Systems with Supercritical Carbon Dioxide 322 7.8 Thermoregulated Biphasic Catalysis 323 7.9 Conclusions and Prospects 323 References 324 8 Chemicals from Renewable Raw Materials 329 8.1 Introduction 329 8.2 Carbohydrates 332 8.2.1 Chemicals from Glucose via Fermentation 333 8.2.2 Ethanol 335 8.2.2.1 Microbial Production of Ethanol 338 8.2.2.2 Green Aspects 339 8.2.3 Lactic Acid 340 Contents 8.2.4 1,3-Propanediol 342 8.2.5 B-Hydroxypropanoic Acid 346 8.2.6 Synthesizing Aromatics in Nature s Way 347 8.2.7 Aromatic α -Amino Acids 349 8.2.7 Indigo: the Natural Color 353 8.2.8 Pantothenic Acid 355 8.2.9 The /S-Lactam Building Block 7-Aminodesacetoxycephalosporamc Acid 358 8.2.9 Riboflavin 361 8.3 Chemical and Chemoenzymatic Transformations of Carbohydrates into Fine Chemicals and Chiral Building Blocks 363 8.3.1 Ascorbic Acid 364 8.3.2 Carbohydrate-derived C3 and C4 Building Blocks 368 8.3.3 5-Hydroxyrnethylfurfural and Levulinic Acid 370 8.4 Fats and Oils 372 8.4.1 Biodiesel 373 8.4.2 Fatty Acid Esters 374 8.5 Terpenes 375 8.6 Renewable Raw Materials as Catalysts 378 8.7 Green Polymers from Renewable Raw Materials 379 8.8 Concluding Remarks 380 References 380 9 Process Integration and Cascade Catalysis 389 9.1 Introduction 389 9.2 Dynamic Kinetic Resolutions by Enzymes Coupled with Metal Catalysts 390 9.3 Combination of Asymmetric Hydrogénation with Enzymatic Hydrolysis 401 9.4 Catalyst Recovery and Recycling 402 9.5 Immobilization of Enzymes: Cross-linked Enzyme Aggregates (CLEAs) 405 9.6 Conclusions and Prospects 406 References 407 10 Epilogue: Future Outlook 409 10.1 Green Chemistry: The Road to Sustamability 409 10.2 Catalysis and Green Chemistry 410 10.3 The Medium is the Message 412 10.4 Metabolic Engineering and Cascade Catalysis 413 10.5 Concluding Remarks 413 References 414 Subject Index 415
adam_txt Contents Preface XI Foreword XIJÍ 1 Introduction: Creen Chemistry and Catalysis 1 1.1 Introduction 1 1.2. E Factors and Atom Efficiency 2 1.3 The Role of Catalysis 5 1.4 The Development of Organic Synthesis 8 1.5 Catalysis by Solid Acids and Bases 10 1.6 Catalytic Reduction 14 1.7 Catalytic Oxidation 28 1.8 Catalytic C -С Bond Formation 23 1.9 The Question of Solvents: Alternative Reaction Media 27 1.10 Biocatalysis 29 1.11 Renewable Raw Materials and White Biotechnology 34 1.12 Enantioselective Catalysis 35 1.13 Risky Reagents 38 1.14 Process Integration and Catalytic Cascades 39 References 43 2 Solid Acids and Bases as Catalysts 49 2.1 Introduction 49 2.2 Solid Acid Catalysis 50 2.2.1 Acidic Clays 50 2.2.2 Zeolites and Zeotypes: Synthesis and Structure 52 2.2.3 Zeolite-catalyzed Reactions in Organic Synthesis 59 2.2.3.1 Electrophilic Aromatic Substitutions 60 2.2.3.2 Additions and Eliminations 65 2.2.3.3 Rearrangements and Isomerizations 67 2.2.3.4 Cyclizations 70 2.2.4 Solid Acids Containing Surface SOjH Functionality 71 2.2.5 Heteropoly Acids 75 Green Chemistiy and Catalysis. I. Arends, R. Sheldon, U. Hanefeld Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-30715-9 VI Contents 2.3 Solid Base Catalysis 76 2.3.1 Anionie Clays: Hydrotalcites 76 2.3.2 Basic Zeolites 80 2.3.3 Organic Bases Attached to Mesoporous Silicas 82 2.4 Other Approaches 85 References 87 3 Catalytic Reductions 91 3.1 ' Introduction 91 3.2 Heterogeneous Reduction Catalysts 92 3.2.1 General Properties 92 3.2.2 Transfer Hydrogénation Using Heterogeneous Catalysts 100 3.2.3 Chiral Heterogeneous Reduction Catalysts 302 3.3 Homogeneous Reduction Catalysts 104 3.3.1 Wilkinson Catalyst 104 3.3.2 Chiral Homogeneous Hydrogénation Catalysts and Reduction of the C = C Double Bond 206 3.3.3 Chiral Homogeneous Catalysts and Ketone Hydrogénation 111 3.3.4 Imine Hydrogénation 113 3.3.5 Transfer Hydrogénation using Homogeneous Catalysts 114 3.4 Biocatalytic Reductions 116 3.4.1 Introduction 216 3.4.2 Enzyme Technology in Biocatalytic Reduction 119 3.4.3 Whole Cell Technology for Biocatalytic Reduction 125 3.5 Conclusions 227 References 127 4 Catalytic Oxidations 133 4.1 Introduction 133 4.2 Mechanisms of Metal-catalyzed Oxidations: General Considerations 134 4.2.1 Homolytic Mechanisms 236 4.2.1.1 Direct Homolytic Oxidation of Organic Substrates 237 4.2.2 Heterolytic Mechanisms 238 4.2.2.1 Catalytic Oxygen Transfer 239 4.2.3 Ligand Design in Oxidation Catalysis 242 4.2.4 Enzyme Catalyzed Oxidations 242 4.3 ■ Alkenes 247 4.3.1 Epoxidation 247 4.3.1.1 Tungsten Catalysts 249 4.3.1.2 Rhenium Catalysts 250 4.3.1.3 Ruthenium Catalysts 151 4.3.1.4 Manganese Catalysts 252 4.3.1.5 Iron Catalysts 253 4.3.1.6 Selenium and Organocatalysts 254 4.3.1.7 Hydrotalcite and Alumina Systems 156 4.3.1.8 Biocatalytic Systems 156 4.3.2 Vicinal Dihydroxylation 156 4.3.3 Oxidative Cleavage of Olefms 158 4.3.4 Oxidative Ketonization 159 4.3.5 Allylic Oxidations 161 4.4 Alkanes and Alkylaromatics 162 4.4.1 Oxidation of Alkanes 163 4.4.2 Oxidation of Aromatic Side Chains 165 4.4.3 Aromatic Ring Oxidation 168 4.5 Oxygen-containing Compounds 170 4.5.1 Oxidation of Alcohols 170 4.5.1.1 Ruthenium Catalysts 172 4.5.1.2 Palladium-catalyzed Oxidations with O2 176 4.5.1.3 Gold Catalysts 178 4.5.1.4 Copper Catalysts 179 4.5.1.5 Other Metals as Catalysts for Oxidation with O2 181 4.5.1.6 Catalytic Oxidation of Alcohols with Hydrogen Peroxide 182 4.5.1.7 Oxoammonium Ions in Alcohol Oxidation 183 4.5.1.8 Biocatalytic Oxidation of Alcohols 184 4.5.2 Oxidative Cleavage of 1,2-Diols 185 4.5.3 Carbohydrate Oxidation 185 4.5.4 Oxidation of Aldehydes and Ketones 186 4.5.4.1 Baeyer- Villiger Oxidation 187 4.5.5 Oxidation of Phenols 190 4.5.6 Oxidation of Ethers 191 4.6 Heteroatom Oxidation 192 4.6.1 Oxidation of Amines 192 4.6.1.1 Primary Amines 192 4.6.1.2 Secondary Amines 193 4.6.1.3 Tertiary Amines 193 4.6.1.4 Amides 194 4.6.2 Sulfoxidation 194 4.7 Asymmetric Oxidation 195 4.7.1 Asymmetric Epoxidation of Olefms 196 4.7.2 Asymmetric Dihydroxylation of Olefms 204 4.7.3 Asymmetric Sulfoxidation 207 4.7 A Asymmetric Baeyer-Villiger Oxidation 208 4.5 Conclusion 211 References 212 5 Catalytic Carbon-Carbon Bond Formation 223 5.1 Introduction 223 5.2 Enzymes for Carbon-Carbon Bond Formation 223 5.2.1 Enzymatic Synthesis of Cyanohydrins 224 I 5.2.1.1 Hydroxynitrile Lyases 225 5.2.1.2 Lipase-based Dynamic Kinetic Resolution 228 5.2.2 Enzymatic Synthesis of a-Hydroxyketones (Acyloins) 229 5.2.3 Enzymatic Synthesis of a-Hydroxy Acids 234 5.2.4 Enzymatic Synthesis of Aldols (ß-Hydroxy Carbonyl Compounds) 235 5.2.4.1 DHAP-dependent Aldolases 236 5.2.4.2 . PEP- and Pyruvate-dependent Aldolases 241 5.2.4.3 Glycine-dependent Aldolases 242 5.2.4.4 Acetaldehyde-dependent Aldolases 242 5.2.5 Enzymatic Synthesis of ß-Hydroxynitriles 244 5.3 Transition Metal Catalysis 245 5.3.1 Carbon Monoxide as a Building Block 245 5.3.1.1 Carbonylation of R-X (CO "Insertion/R-migration") 245 5.3.1.2 Aminocarbonylation 249 5.3.1.3 Hydroformylation or "Oxo" Reaction 250 5.3.1.4 Hydroaminomethylation 251 5.3.1.5 Methyl Methacrylate via Carbonylation Reactions 253 5.3.2 Heck-type Reactions 254 5.3.2.1 Heck Reaction 256 5.3.2.2 Suzuki and Sonogashira Reaction 257 5.3.3 Metathesis 258 5.3.3.1 ' Metathesis involving Propylene 259 5.3.3.2 Ring-opening Metathesis Polymerization (ROMP) 259 5.3.3.3 Ring-closing Metathesis (RCM) 260 5.4 Conclusion and Outlook 261 References 261 6 Hydrolysis 265 6.1 Introduction 265 6.1.1 Stereoselectivity of Hydrolases 266 6.1.2 Hydrolase-based Preparation of Enantiopure Compounds 268 6.1.2.1 Kinetic Resolutions 268 6.1.2.2 Dynamic Kinetic Resolutions 269 6.1.2.3 Kinetic Resolutions Combined with Inversions 270 6.1.2.4 Hydrolysis of Symmetric Molecules and the "meso-trick" 271 6.2 , Hydrolysis of Esters 271 6.2.1 Kinetic Resolutions of Esters 272 6.2.2 Dynamic Kinetic Resolutions of Esters 274 6.2.3 Kinetic Resolutions of Esters Combined with Inversions 276 6.2.4 Hydrolysis of Symmetric Esters and the "meso-trick" 278 6.3 Hydrolysis of Amides 279 6.3.1 Production of Amino Acids by (Dynamic) Kinetic Resolution 280 6.3.1.1 The Acylase Process 280 6.3.1.2 The Amidase Process 281 6.3.1.3 The Hydantoinase Process 282 6.3.1.4 Cysteine 283 6.3.2 Enzyme-catalysed Hydrolysis of Amides 283 6.3.3 Enzyme-catalysed Deprotection of Amines 285 6.4 Hydrolysis of Nitriles 286 6.4.1 Nitrilases 286 6.4.2 Nitrile Hydratases 287 6.5 Conclusion and Outlook 290 References 290 7 Catalysis in Novel Reaction Media 295 7.1 Introduction 295 7.1.1 Why use a solvent? 295 7.1.2 Choice of Solvent 296 7.1.3 Alternative Reaction Media and Multiphasic Systems 298 7.2 Two Immiscible Organic Solvents 299 7.3 Aqueous Biphasic Catalysis 300 7.3.1 Olefin Hydroformylation 302 7.3.2 Hydrogénation 304 7.3.3 Carbonylations 306 7.3.4 Other C -С Bond Forming Reactions 307 7.3.5 Oxidations 309 7.4 Fluorous Biphasic Catalysis 309 7.4.1 Olefin Hydroformylation 310 7.4.2 Other Reactions 311 7.5 Supercritical Carbon Dioxide 323 7.5.1 Supercritical Fluids 313 7.5.2 Supercritical Carbon Dioxide 3J4 7.5.3 Hydrogénation 314 7.5.4 Oxidation 316 7.5.5 Biocatalysis 317 7.6 Ionic Liquids 318 7.7 Biphasic Systems with Supercritical Carbon Dioxide 322 7.8 Thermoregulated Biphasic Catalysis 323 7.9 Conclusions and Prospects 323 References 324 8 Chemicals from Renewable Raw Materials 329 8.1 Introduction 329 8.2 Carbohydrates 332 8.2.1 Chemicals from Glucose via Fermentation 333 8.2.2 Ethanol 335 8.2.2.1 Microbial Production of Ethanol 338 8.2.2.2 Green Aspects 339 8.2.3 Lactic Acid 340 Contents 8.2.4 1,3-Propanediol 342 8.2.5 B-Hydroxypropanoic Acid 346 8.2.6 Synthesizing Aromatics in Nature's Way 347 8.2.7 Aromatic α -Amino Acids 349 8.2.7 Indigo: the Natural Color 353 8.2.8 Pantothenic Acid 355 8.2.9 The /S-Lactam Building Block 7-Aminodesacetoxycephalosporamc Acid 358 8.2.9 Riboflavin 361 8.3 Chemical and Chemoenzymatic Transformations of Carbohydrates into Fine Chemicals and Chiral Building Blocks 363 8.3.1 Ascorbic Acid 364 8.3.2 Carbohydrate-derived C3 and C4 Building Blocks 368 8.3.3 5-Hydroxyrnethylfurfural and Levulinic Acid 370 8.4 Fats and Oils 372 8.4.1 Biodiesel 373 8.4.2 Fatty Acid Esters 374 8.5 Terpenes 375 8.6 Renewable Raw Materials as Catalysts 378 8.7 Green Polymers from Renewable Raw Materials 379 8.8 Concluding Remarks 380 References 380 9 Process Integration and Cascade Catalysis 389 9.1 Introduction 389 9.2 Dynamic Kinetic Resolutions by Enzymes Coupled with Metal Catalysts 390 9.3 Combination of Asymmetric Hydrogénation with Enzymatic Hydrolysis 401 9.4 Catalyst Recovery and Recycling 402 9.5 Immobilization of Enzymes: Cross-linked Enzyme Aggregates (CLEAs) 405 9.6 Conclusions and Prospects 406 References 407 10 Epilogue: Future Outlook 409 10.1 Green Chemistry: The Road to Sustamability 409 10.2 Catalysis and Green Chemistry 410 10.3 The Medium is the Message 412 10.4 Metabolic Engineering and Cascade Catalysis 413 10.5 Concluding Remarks 413 References 414 Subject Index 415
any_adam_object 1
any_adam_object_boolean 1
author Sheldon, Roger Arthur 1942-
Arends, Isabel 1966-
Hanefeld, Ulf 1966-
author_GND (DE-588)122515048
(DE-588)132720086
(DE-588)113692536
author_facet Sheldon, Roger Arthur 1942-
Arends, Isabel 1966-
Hanefeld, Ulf 1966-
author_role aut
aut
aut
author_sort Sheldon, Roger Arthur 1942-
author_variant r a s ra ras
i a ia
u h uh
building Verbundindex
bvnumber BV021547665
classification_rvk VE 7040
VN 9200
VN 9250
classification_tum CIT 325f
CHE 050f
ctrlnum (OCoLC)180887503
(DE-599)BVBBV021547665
dewey-full 547.215
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 547 - Organic chemistry
dewey-raw 547.215
dewey-search 547.215
dewey-sort 3547.215
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Chemie
Chemie-Ingenieurwesen
discipline_str_mv Chemie / Pharmazie
Chemie
Chemie-Ingenieurwesen
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02070nam a2200529 c 4500</leader><controlfield tag="001">BV021547665</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060411s2007 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N34,0663</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">975834487</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527307159</subfield><subfield code="9">978-3-527-30715-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527307159</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1130715 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180887503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021547665</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1029</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547.215</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 7040</subfield><subfield code="0">(DE-625)147136:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9200</subfield><subfield code="0">(DE-625)147637:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9250</subfield><subfield code="0">(DE-625)147638:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 325f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sheldon, Roger Arthur</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122515048</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green chemistry and catalysis</subfield><subfield code="c">Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 433 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental chemistry</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arends, Isabel</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132720086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanefeld, Ulf</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113692536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/bs/toc/495791474.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014763785&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014763785</subfield></datafield></record></collection>
id DE-604.BV021547665
illustrated Not Illustrated
index_date 2024-07-02T14:30:23Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9783527307159
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014763785
oclc_num 180887503
open_access_boolean
owner DE-20
DE-91G
DE-BY-TUM
DE-29T
DE-19
DE-BY-UBM
DE-92
DE-384
DE-703
DE-634
DE-83
DE-11
DE-1029
owner_facet DE-20
DE-91G
DE-BY-TUM
DE-29T
DE-19
DE-BY-UBM
DE-92
DE-384
DE-703
DE-634
DE-83
DE-11
DE-1029
physical XIV, 433 S.
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher WILEY-VCH
record_format marc
spellingShingle Sheldon, Roger Arthur 1942-
Arends, Isabel 1966-
Hanefeld, Ulf 1966-
Green chemistry and catalysis
Catalysis
Environmental chemistry Industrial applications
Katalyse (DE-588)4029921-1 gnd
Grüne Chemie (DE-588)7563215-9 gnd
subject_GND (DE-588)4029921-1
(DE-588)7563215-9
title Green chemistry and catalysis
title_auth Green chemistry and catalysis
title_exact_search Green chemistry and catalysis
title_exact_search_txtP Green chemistry and catalysis
title_full Green chemistry and catalysis Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld
title_fullStr Green chemistry and catalysis Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld
title_full_unstemmed Green chemistry and catalysis Roger Athur Sheldon, Isabel Arends, and Ulf Hanefeld
title_short Green chemistry and catalysis
title_sort green chemistry and catalysis
topic Catalysis
Environmental chemistry Industrial applications
Katalyse (DE-588)4029921-1 gnd
Grüne Chemie (DE-588)7563215-9 gnd
topic_facet Catalysis
Environmental chemistry Industrial applications
Katalyse
Grüne Chemie
url http://www.gbv.de/dms/bs/toc/495791474.pdf
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014763785&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT sheldonrogerarthur greenchemistryandcatalysis
AT arendsisabel greenchemistryandcatalysis
AT hanefeldulf greenchemistryandcatalysis