Continuum mechanics using Mathematica fundamentals, applications and scientific computing

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Romano, Antonio (VerfasserIn), Lancellotta, Renato (VerfasserIn), Marasco, Addolorata 1972- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston ; Basel ; Berlin Birkhäuser 2006
Schriftenreihe:Modeling and simulation in science, engineering and technology
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV021525413
003 DE-604
005 20090825
007 t
008 060324s2006 gw d||| |||| 00||| eng d
015 |a 06,A07,0849  |2 dnb 
016 7 |a 97801734X  |2 DE-101 
020 |a 9780817632403  |c Pp.  |9 978-0-8176-3240-3 
020 |a 0817632409  |c Pp.  |9 0-8176-3240-9 
035 |a (OCoLC)64163728 
035 |a (DE-599)BVBBV021525413 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE 
049 |a DE-703  |a DE-634  |a DE-91G  |a DE-83  |a DE-11 
050 0 |a QA808.2 
082 0 |a 531  |2 22 
084 |a UF 2000  |0 (DE-625)145568:  |2 rvk 
084 |a PHY 210f  |2 stub 
084 |a 530  |2 sdnb 
084 |a PHY 016f  |2 stub 
100 1 |a Romano, Antonio  |e Verfasser  |4 aut 
245 1 0 |a Continuum mechanics using Mathematica  |b fundamentals, applications and scientific computing  |c Antonio Romano ; Renato Lancellotta ; Addolorata Marasco 
264 1 |a Boston ; Basel ; Berlin  |b Birkhäuser  |c 2006 
300 |a XII, 388 S.  |b graph. Darst.  |e 1 CD-ROM (12 cm) 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Modeling and simulation in science, engineering and technology 
630 0 4 |a Mathematica (Computer file) 
650 4 |a Datenverarbeitung 
650 4 |a Continuum mechanics  |x Data processing 
650 0 7 |a Mathematica  |g Programm  |0 (DE-588)4268208-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Kontinuumsmechanik  |0 (DE-588)4032296-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Kontinuumsmechanik  |0 (DE-588)4032296-8  |D s 
689 0 1 |a Mathematica  |g Programm  |0 (DE-588)4268208-3  |D s 
689 0 |5 DE-604 
700 1 |a Lancellotta, Renato  |e Verfasser  |4 aut 
700 1 |a Marasco, Addolorata  |d 1972-  |e Verfasser  |0 (DE-588)123267722  |4 aut 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014741852&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-014741852 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202/PHY 210f 2009 A 5743
DE-BY-TUM_katkey 1700588
DE-BY-TUM_media_number 040020762216
_version_ 1816712975970467840
adam_text ANTONIO ROMANO RENATO LANCELLOTTA ADDOLORATA MARASCO CONTINUUM MECHANICS USING MATHEMATICA FUNDAMENTALS, APPLICATIONS AND SCIENTIFIC COMPUTING BIRKHAUSER BOSTON * BASEL * BERLIN CONTENTS PREFACE IX 1 ELEMENTS OF LINEAR ALGEBRA 1 1.1 MOTIVATION TO STUDY LINEAR ALGEBRA 1 1.2 VECTOR SPACES AND BASES 2 1.3 EUCLIDEAN VECTOR SPACE 5 1.4 BASE CHANGES 9 1.5 VECTOR PRODUCT 11 1.6 MIXED PRODUCT 13 1.7 ELEMENTS OF TENSOR ALGEBRA 14 1.8 EIGENVALUES AND EIGENVECTORS OF A EUCLIDEAN SECOND-ORDER TENSOR 20 1.9 ORTHOGONAL TENSORS 24 1.10 CAUCHY S POLAR DECOMPOSITION THEOREM 28 1.11 HIGHER ORDER TENSORS 29 1.12 EUCLIDEAN POINT SPACE 30 1.13 EXERCISES 32 1.14 THE PROGRAM VECTORSYS 36 1.15 THE PROGRAM EIGENSYSTEMAG 41 2 VECTOR ANALYSIS 45 2.1 CURVILINEAR COORDINATES 45 2.2 EXAMPLES OF CURVILINEAR COORDINATES 48 2.3 DIFFERENTIATION OF VECTOR FIELDS 50 2.4 THE STOKES AND GAUSS THEOREMS 55 2.5 SINGULAR SURFACES 56 2.6 USEFUL FORMULAE 60 2.7 SOME CURVILINEAR COORDINATES 62 2.7.1 GENERALIZED POLAR COORDINATES 63 2.7.2 CYLINDRICAL COORDINATES 64 2.7.3 SPHERICAL COORDINATES 65 2.7.4 ELLIPTIC COORDINATES 66 VI CONTENTS 2.7.5 PARABOLIC COORDINATES 67 2.7.6 BIPOLAR COORDINATES 68 2.7.7 PROLATE AND OBLATE SPHEROIDAL COORDINATES 68 2.7.8 PARABOLOIDAL COORDINATES 69 2.8 EXERCISES 69 2.9 THE PROGRAM OPERATOR 70 3 FINITE AND INFINITESIMAL DEFORMATIONS 77 3.1 DEFORMATION GRADIENT 77 3.2 STRETCH RATIO AND ANGULAR DISTORTION 80 3.3 INVARIANTS OF C AND B 83 3.4 DISPLACEMENT AND DISPLACEMENT GRADIENT 84 3.5 INFINITESIMAL DEFORMATION THEORY 86 3.6 TRANSFORMATION RULES FOR DEFORMATION TENSORS 88 3.7 SOME RELEVANT FORMULAE 89 3.8 COMPATIBILITY CONDITIONS 92 3.9 CURVILINEAR COORDINATES 95 3.10 EXERCISES 96 3.11 THE PROGRAM DEFORMATION 101 4 KINEMATICS 109 4.1 VELOCITY AND ACCELERATION 109 4.2 VELOCITY GRADIENT 112 4.3 RIGID, IRROTATIONAL, AND ISOCHORIC MOTIONS 113 4.4 TRANSFORMATION RULES FOR A CHANGE OF FRAME 115 4.5 SINGULAR MOVING SURFACES 116 4.6 TIME DERIVATIVE OF A MOVING VOLUME 119 4.7 WORKED EXERCISES 123 4.8 THE PROGRAM VELOCITY 126 5 BALANCE EQUATIONS 131 5.1 GENERAL FORMULATION OF A BALANCE EQUATION 131 5.2 MASS CONSERVATION . . . 136 5.3 MOMENTUM BALANCE EQUATION 137 5.4 BALANCE OF ANGULAR MOMENTUM 140 5.5 ENERGY BALANCE 141 5.6 ENTROPY INEQUALITY 143 5.7 LAGRANGIAN FORMULATION OF BALANCE EQUATIONS 146 5.8 THE PRINCIPLE OF VIRTUAL DISPLACEMENTS 150 5.9 EXERCISES 151 CONTENTS VII CONSTITUTIVE EQUATIONS 155 6.1 CONSTITUTIVE AXIOMS 155 6.2 THERMOVISCOELASTIC BEHAVIOR 160 6.3 LINEAR THERMOELASTICITY 165 6.4 EXERCISES 169 SYMMETRY GROUPS: SOLIDS AND FLUIDS 171 7.1 SYMMETRY 171 7.2 ISOTROPIC SOLIDS 174 7.3 PERFECT AND VISCOUS FLUIDS 177 7.4 ANISOTROPIC SOLIDS 181 7.5 EXERCISES 183 7.6 THE PROGRAM LINELASTICITYTENSOR 185 WAVE PROPAGATION 189 8.1 INTRODUCTION 189 8.2 CAUCHY S PROBLEM FOR SECOND-ORDER PDES 190 8.3 CHARACTERISTICS AND CLASSIFICATION OF PDES 194 8.4 EXAMPLES 196 8.5 CAUCHY S PROBLEM FOR A QUASI-LINEAR FIRST-ORDER SYSTEM . 199 8.6 CLASSIFICATION OF FIRST-ORDER SYSTEMS 201 8.7 EXAMPLES 202 8.8 SECOND-ORDER SYSTEMS 206 8.9 ORDINARY WAVES 207 8.10 LINEARIZED THEORY AND WAVES 211 8.11 SHOCKWAVES 215 8.12 EXERCISES 218 8.13 THE PROGRAM PDEEQCLASS 221 8.14 THE PROGRAM PDESYSCLASS 227 8.15 THE PROGRAM WAVESI 233 8.16 THE PROGRAM WAVESII 239 FLUID MECHANICS 245 9.1 PERFECT FLUID 245 9.2 STEVINO S LAW AND ARCHIMEDES PRINCIPLE 246 9.3 FUNDAMENTAL THEOREMS OF FLUID DYNAMICS 250 9.4 BOUNDARY VALUE PROBLEMS FOR A PERFECT FLUID 254 9.5 2D STEADY FLOW OF A PERFECT FLUID 256 9.6 D ALEMBERT S PARADOX AND THE KUTTA-JOUKOWSKY THEOREM 264 9.7 LIFT AND AIRFOILS 267 9.8 NEWTONIAN FLUIDS 272 9.9 APPLICATIONS OF THE NAVIER-STOKES EQUATION 273 9.10 DIMENSIONAL ANALYSIS AND THE NAVIER-STOKES EQUATION . . . 274 9.11 BOUNDARY LAYER 276 CONTENTS 9.12 MOTION OF A VISCOUS LIQUID AROUND AN OBSTACLE 281 9.13 ORDINARY WAVES IN PERFECT FLUIDS 287 9.14 SHOCK WAVES IN FLUIDS 290 9.15 SHOCK WAVES IN A PERFECT GAS 293 9.16 EXERCISES 296 9.17 THE PROGRAM POTENTIAL 298 9.18 THE PROGRAM WING 306 9.19 THE PROGRAM JOUKOWSKY 309 9.20 THE PROGRAM JOUKOWSKYMAP 312 10 LINEAR ELASTICITY 317 10.1 BASIC EQUATIONS OF LINEAR ELASTICITY 317 10.2 UNIQUENESS THEOREMS 321 10.3 EXISTENCE AND UNIQUENESS OF EQUILIBRIUM SOLUTIONS 323 10.4 EXAMPLES OF DEFORMATIONS 327 10.5 THE BOUSSINESQ-PAPKOVICH-NEUBER SOLUTION 329 10.6 SAINT-VENANT S CONJECTURE 330 10.7 THE FUNDAMENTAL SAINT-VENANT SOLUTIONS 335 10.8 ORDINARY WAVES IN ELASTIC SYSTEMS 339 10.9 PLANE WAVES 345 10.10 REFLECTION OF PLANE WAVES IN A HALF-SPACE 350 10.11 RAYLEIGH WAVES 356 10.12 REFLECTION AND REFRACTION OF SH WAVES 359 10.13 HARMONIC WAVES IN A LAYER 362 10.14 EXERCISES 365 11 OTHER APPROACHES TO THERMODYNAMICS 367 11.1 BASIC THERMODYNAMICS 367 11.2 EXTENDED THERMODYNAMICS 370 11.3 SERRIN S APPROACH 372 11.4 AN APPLICATION TO VISCOUS FLUIDS 375 REFERENCES 379 INDEX 383
adam_txt ANTONIO ROMANO RENATO LANCELLOTTA ADDOLORATA MARASCO CONTINUUM MECHANICS USING MATHEMATICA FUNDAMENTALS, APPLICATIONS AND SCIENTIFIC COMPUTING BIRKHAUSER BOSTON * BASEL * BERLIN CONTENTS PREFACE IX 1 ELEMENTS OF LINEAR ALGEBRA 1 1.1 MOTIVATION TO STUDY LINEAR ALGEBRA 1 1.2 VECTOR SPACES AND BASES 2 1.3 EUCLIDEAN VECTOR SPACE 5 1.4 BASE CHANGES 9 1.5 VECTOR PRODUCT 11 1.6 MIXED PRODUCT 13 1.7 ELEMENTS OF TENSOR ALGEBRA 14 1.8 EIGENVALUES AND EIGENVECTORS OF A EUCLIDEAN SECOND-ORDER TENSOR 20 1.9 ORTHOGONAL TENSORS 24 1.10 CAUCHY'S POLAR DECOMPOSITION THEOREM 28 1.11 HIGHER ORDER TENSORS 29 1.12 EUCLIDEAN POINT SPACE 30 1.13 EXERCISES 32 1.14 THE PROGRAM VECTORSYS 36 1.15 THE PROGRAM EIGENSYSTEMAG 41 2 VECTOR ANALYSIS 45 2.1 CURVILINEAR COORDINATES 45 2.2 EXAMPLES OF CURVILINEAR COORDINATES 48 2.3 DIFFERENTIATION OF VECTOR FIELDS 50 2.4 THE STOKES AND GAUSS THEOREMS 55 2.5 SINGULAR SURFACES 56 2.6 USEFUL FORMULAE 60 2.7 SOME CURVILINEAR COORDINATES 62 2.7.1 GENERALIZED POLAR COORDINATES 63 2.7.2 CYLINDRICAL COORDINATES 64 2.7.3 SPHERICAL COORDINATES 65 2.7.4 ELLIPTIC COORDINATES 66 VI CONTENTS 2.7.5 PARABOLIC COORDINATES 67 2.7.6 BIPOLAR COORDINATES 68 2.7.7 PROLATE AND OBLATE SPHEROIDAL COORDINATES 68 2.7.8 PARABOLOIDAL COORDINATES 69 2.8 EXERCISES 69 2.9 THE PROGRAM OPERATOR 70 3 FINITE AND'INFINITESIMAL DEFORMATIONS 77 3.1 DEFORMATION GRADIENT 77 3.2 STRETCH RATIO AND ANGULAR DISTORTION 80 3.3 INVARIANTS OF C AND B 83 3.4 DISPLACEMENT AND DISPLACEMENT GRADIENT 84 3.5 INFINITESIMAL DEFORMATION THEORY 86 3.6 TRANSFORMATION RULES FOR DEFORMATION TENSORS 88 3.7 SOME RELEVANT FORMULAE 89 3.8 COMPATIBILITY CONDITIONS 92 3.9 CURVILINEAR COORDINATES 95 3.10 EXERCISES 96 3.11 THE PROGRAM DEFORMATION 101 4 KINEMATICS 109 4.1 VELOCITY AND ACCELERATION 109 4.2 VELOCITY GRADIENT 112 4.3 RIGID, IRROTATIONAL, AND ISOCHORIC MOTIONS 113 4.4 TRANSFORMATION RULES FOR A CHANGE OF FRAME 115 4.5 SINGULAR MOVING SURFACES 116 4.6 TIME DERIVATIVE OF A MOVING VOLUME 119 4.7 WORKED EXERCISES 123 4.8 THE PROGRAM VELOCITY 126 5 BALANCE EQUATIONS 131 5.1 GENERAL FORMULATION OF A BALANCE EQUATION 131 5.2 MASS CONSERVATION . . . 136 5.3 MOMENTUM BALANCE EQUATION 137 5.4 BALANCE OF ANGULAR MOMENTUM 140 5.5 ENERGY BALANCE 141 5.6 ENTROPY INEQUALITY 143 5.7 LAGRANGIAN FORMULATION OF BALANCE EQUATIONS 146 5.8 THE PRINCIPLE OF VIRTUAL DISPLACEMENTS 150 5.9 EXERCISES 151 CONTENTS VII CONSTITUTIVE EQUATIONS 155 6.1 CONSTITUTIVE AXIOMS 155 6.2 THERMOVISCOELASTIC BEHAVIOR 160 6.3 LINEAR THERMOELASTICITY 165 6.4 EXERCISES 169 SYMMETRY GROUPS: SOLIDS AND FLUIDS 171 7.1 SYMMETRY 171 7.2 ISOTROPIC SOLIDS 174 7.3 PERFECT AND VISCOUS FLUIDS 177 7.4 ANISOTROPIC SOLIDS 181 7.5 EXERCISES 183 7.6 THE PROGRAM LINELASTICITYTENSOR 185 WAVE PROPAGATION 189 8.1 INTRODUCTION 189 8.2 CAUCHY'S PROBLEM FOR SECOND-ORDER PDES 190 8.3 CHARACTERISTICS AND CLASSIFICATION OF PDES 194 8.4 EXAMPLES 196 8.5 CAUCHY'S PROBLEM FOR A QUASI-LINEAR FIRST-ORDER SYSTEM . 199 8.6 CLASSIFICATION OF FIRST-ORDER SYSTEMS 201 8.7 EXAMPLES 202 8.8 SECOND-ORDER SYSTEMS 206 8.9 ORDINARY WAVES 207 8.10 LINEARIZED THEORY AND WAVES 211 8.11 SHOCKWAVES 215 8.12 EXERCISES 218 8.13 THE PROGRAM PDEEQCLASS 221 8.14 THE PROGRAM PDESYSCLASS 227 8.15 THE PROGRAM WAVESI 233 8.16 THE PROGRAM WAVESII 239 FLUID MECHANICS 245 9.1 PERFECT FLUID 245 9.2 STEVINO'S LAW AND ARCHIMEDES' PRINCIPLE 246 9.3 FUNDAMENTAL THEOREMS OF FLUID DYNAMICS 250 9.4 BOUNDARY VALUE PROBLEMS FOR A PERFECT FLUID 254 9.5 2D STEADY FLOW OF A PERFECT FLUID 256 9.6 D'ALEMBERT'S PARADOX AND THE KUTTA-JOUKOWSKY THEOREM 264 9.7 LIFT AND AIRFOILS 267 9.8 NEWTONIAN FLUIDS 272 9.9 APPLICATIONS OF THE NAVIER-STOKES EQUATION 273 9.10 DIMENSIONAL ANALYSIS AND THE NAVIER-STOKES EQUATION . . . 274 9.11 BOUNDARY LAYER 276 CONTENTS 9.12 MOTION OF A VISCOUS LIQUID AROUND AN OBSTACLE 281 9.13 ORDINARY WAVES IN PERFECT FLUIDS 287 9.14 SHOCK WAVES IN FLUIDS 290 9.15 SHOCK WAVES IN A PERFECT GAS 293 9.16 EXERCISES 296 9.17 THE PROGRAM POTENTIAL 298 9.18 THE PROGRAM WING 306 9.19 THE PROGRAM JOUKOWSKY 309 9.20 THE PROGRAM JOUKOWSKYMAP 312 10 LINEAR ELASTICITY 317 10.1 BASIC EQUATIONS OF LINEAR ELASTICITY 317 10.2 UNIQUENESS THEOREMS 321 10.3 EXISTENCE AND UNIQUENESS OF EQUILIBRIUM SOLUTIONS 323 10.4 EXAMPLES OF DEFORMATIONS 327 10.5 THE BOUSSINESQ-PAPKOVICH-NEUBER SOLUTION 329 10.6 SAINT-VENANT'S CONJECTURE 330 10.7 THE FUNDAMENTAL SAINT-VENANT SOLUTIONS 335 10.8 ORDINARY WAVES IN ELASTIC SYSTEMS 339 10.9 PLANE WAVES 345 10.10 REFLECTION OF PLANE WAVES IN A HALF-SPACE 350 10.11 RAYLEIGH WAVES 356 10.12 REFLECTION AND REFRACTION OF SH WAVES 359 10.13 HARMONIC WAVES IN A LAYER 362 10.14 EXERCISES 365 11 OTHER APPROACHES TO THERMODYNAMICS 367 11.1 BASIC THERMODYNAMICS 367 11.2 EXTENDED THERMODYNAMICS 370 11.3 SERRIN'S APPROACH 372 11.4 AN APPLICATION TO VISCOUS FLUIDS 375 REFERENCES 379 INDEX 383
any_adam_object 1
any_adam_object_boolean 1
author Romano, Antonio
Lancellotta, Renato
Marasco, Addolorata 1972-
author_GND (DE-588)123267722
author_facet Romano, Antonio
Lancellotta, Renato
Marasco, Addolorata 1972-
author_role aut
aut
aut
author_sort Romano, Antonio
author_variant a r ar
r l rl
a m am
building Verbundindex
bvnumber BV021525413
callnumber-first Q - Science
callnumber-label QA808
callnumber-raw QA808.2
callnumber-search QA808.2
callnumber-sort QA 3808.2
callnumber-subject QA - Mathematics
classification_rvk UF 2000
classification_tum PHY 210f
PHY 016f
ctrlnum (OCoLC)64163728
(DE-599)BVBBV021525413
dewey-full 531
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531
dewey-search 531
dewey-sort 3531
dewey-tens 530 - Physics
discipline Physik
discipline_str_mv Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02076nam a2200517 c 4500</leader><controlfield tag="001">BV021525413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090825 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060324s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A07,0849</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">97801734X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817632403</subfield><subfield code="c">Pp.</subfield><subfield code="9">978-0-8176-3240-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817632409</subfield><subfield code="c">Pp.</subfield><subfield code="9">0-8176-3240-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64163728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021525413</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA808.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 2000</subfield><subfield code="0">(DE-625)145568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 210f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 016f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Romano, Antonio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuum mechanics using Mathematica</subfield><subfield code="b">fundamentals, applications and scientific computing</subfield><subfield code="c">Antonio Romano ; Renato Lancellotta ; Addolorata Marasco</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 388 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="e">1 CD-ROM (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modeling and simulation in science, engineering and technology</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">Mathematica (Computer file)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematica</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4268208-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lancellotta, Renato</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marasco, Addolorata</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123267722</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014741852&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014741852</subfield></datafield></record></collection>
id DE-604.BV021525413
illustrated Illustrated
index_date 2024-07-02T14:23:45Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780817632403
0817632409
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014741852
oclc_num 64163728
open_access_boolean
owner DE-703
DE-634
DE-91G
DE-BY-TUM
DE-83
DE-11
owner_facet DE-703
DE-634
DE-91G
DE-BY-TUM
DE-83
DE-11
physical XII, 388 S. graph. Darst. 1 CD-ROM (12 cm)
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Birkhäuser
record_format marc
series2 Modeling and simulation in science, engineering and technology
spellingShingle Romano, Antonio
Lancellotta, Renato
Marasco, Addolorata 1972-
Continuum mechanics using Mathematica fundamentals, applications and scientific computing
Mathematica (Computer file)
Datenverarbeitung
Continuum mechanics Data processing
Mathematica Programm (DE-588)4268208-3 gnd
Kontinuumsmechanik (DE-588)4032296-8 gnd
subject_GND (DE-588)4268208-3
(DE-588)4032296-8
title Continuum mechanics using Mathematica fundamentals, applications and scientific computing
title_auth Continuum mechanics using Mathematica fundamentals, applications and scientific computing
title_exact_search Continuum mechanics using Mathematica fundamentals, applications and scientific computing
title_exact_search_txtP Continuum mechanics using Mathematica fundamentals, applications and scientific computing
title_full Continuum mechanics using Mathematica fundamentals, applications and scientific computing Antonio Romano ; Renato Lancellotta ; Addolorata Marasco
title_fullStr Continuum mechanics using Mathematica fundamentals, applications and scientific computing Antonio Romano ; Renato Lancellotta ; Addolorata Marasco
title_full_unstemmed Continuum mechanics using Mathematica fundamentals, applications and scientific computing Antonio Romano ; Renato Lancellotta ; Addolorata Marasco
title_short Continuum mechanics using Mathematica
title_sort continuum mechanics using mathematica fundamentals applications and scientific computing
title_sub fundamentals, applications and scientific computing
topic Mathematica (Computer file)
Datenverarbeitung
Continuum mechanics Data processing
Mathematica Programm (DE-588)4268208-3 gnd
Kontinuumsmechanik (DE-588)4032296-8 gnd
topic_facet Mathematica (Computer file)
Datenverarbeitung
Continuum mechanics Data processing
Mathematica Programm
Kontinuumsmechanik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014741852&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT romanoantonio continuummechanicsusingmathematicafundamentalsapplicationsandscientificcomputing
AT lancellottarenato continuummechanicsusingmathematicafundamentalsapplicationsandscientificcomputing
AT marascoaddolorata continuummechanicsusingmathematicafundamentalsapplicationsandscientificcomputing