Modern aspects of linear algebra

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Godunov, Sergej K. (VerfasserIn)
Format: Buch
Sprache:English
Russian
Veröffentlicht: Boca Raton AMS 1998
Schriftenreihe:Translations of mathematical monographs 175
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV021273732
003 DE-604
005 20060215
007 t|
008 051221s1998 xx d||| |||| 00||| eng d
020 |a 0821808885  |9 0-8218-0888-5 
035 |a (OCoLC)38494898 
035 |a (DE-599)BVBBV021273732 
040 |a DE-604  |b ger  |e rakwb 
041 1 |a eng  |h rus 
049 |a DE-91G 
050 0 |a QA184 
082 0 |a 512/.5  |2 21 
084 |a SK 220  |0 (DE-625)143224:  |2 rvk 
084 |a MAT 150f  |2 stub 
100 1 |a Godunov, Sergej K.  |e Verfasser  |4 aut 
245 1 0 |a Modern aspects of linear algebra  |c by S. K. Godunov 
264 1 |a Boca Raton  |b AMS  |c 1998 
300 |a XVI, 303 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Translations of mathematical monographs  |v 175 
650 7 |a Algèbre linéaire  |2 ram 
650 7 |a Calcul matriciel  |2 jussieu 
650 7 |a Equation Ljapunov  |2 jussieu 
650 7 |a Forme quadratique  |2 jussieu 
650 7 |a Inégalité Weyl  |2 jussieu 
650 7 |a Méthode élément fini  |2 jussieu 
650 7 |a Opérateurs non auto-adjoints  |2 ram 
650 7 |a Principe variationnel  |2 jussieu 
650 7 |a Résolvante  |2 jussieu 
650 7 |a Théorie spectrale (Mathématiques)  |2 ram 
650 7 |a Théorème Schur  |2 jussieu 
650 4 |a Algebras, Linear 
650 4 |a Nonselfadjoint operators 
650 4 |a Spectral theory (Mathematics) 
650 0 7 |a Lineare Algebra  |0 (DE-588)4035811-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Lineare Algebra  |0 (DE-588)4035811-2  |D s 
689 0 |5 DE-604 
830 0 |a Translations of mathematical monographs  |v 175  |w (DE-604)BV000002394  |9 175 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014594820&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-014594820 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 150f 2006 A 1778
DE-BY-TUM_katkey 1535238
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020290760
_version_ 1820877395949780992
adam_text Contents Preface xj Part 1. Introduction 1 Chapter 1. Euclidean Linear Spaces 3 1.1. The simplest properties 3 1.2. Linear mappings and matrices. Determinants 5 1.3. The accuracy problems in computations 9 Chapter 2. Orthogonal and Unitary Linear Transformations 15 2.1. Orthogonal transformations 15 2.2. Orthogonal reflections 16 2.3. Chain of two dimensional rotations 20 Chapter 3. Orthogonal and Unitary Transformations. Singular Values 25 3.1. Representation of a rectangular matrix 25 3.2. Simplification of matrices. Hessenberg matrices 30 3.3. Singular value decomposition 36 3.4. Singular values 40 Part 2. Matrices of Operators in the Euclidean Space 45 Chapter 4. Unitary Similar Transformations. The Schur Theorem 47 4.1. Reduction of a square matrix to the triangular form 47 4.2. The Schur theorem 49 4.3. Criterion for the solvability of a matrix Sylvester equation 50 4.4. Applications of the criterion 53 4.5. Invariant subspaces 56 Chapter 5. Alternation Theorems 59 5.1. Formulation of alternation theorems 59 5.2. The proof of the simplified alternation theorems 62 5.3. The proof of the general alternation theorems 68 5.4. Corollaries of alternation theorems 74 5.5. Useful inequalities for convex functions 78 5.6. Singular values of products of matrices 81 5.7. Foundations of the Sturm method 82 Chapter 6. The Weyl Inequalities 87 6.1. The Weyl inequalities and the Horn theorem 87 vii viii CONTENTS 6.2. The proof of the Mirsky lemma 93 6.3. Corollaries of the Weyl inequalities 97 Chapter 7. Variational Principles 101 7.1. Stationary values of a Hermitian form on the unit sphere 101 7.2. Stationary values of a Hermitian form 103 7.3. Variational Weber principles 106 7.4. The variational Courant Fischer principle 107 7.5. Inequalities for singular values 108 7.6. Remark about enumeration of singular values 112 7.7. The notion of conditionality for solutions of linear equations 113 7.8. Approximation by matrices of small rank 117 Chapter 8. Resolvent and Dichotomy of Spectrum 123 8.1. Projections onto invariant subspaces 123 8.2. Integral representation of projections 127 8.3. Dichotomy of spectrum 130 8.4. Matrix functions and integral representations 132 8.5. Matrix exponential and matrix powers 135 8.6. Estimate for the resolvent of a matrix 136 Chapter 9. Quadratic Forms in the Spectrum Dichotomy Problem 139 9.1. Integral criteria for the dichotomy quality 139 9.2. Historical remarks 143 9.3. Lyapunov theorems 146 Chapter 10. Matrix Equations and Projections 151 10.1. Solutions to the Lyapunov equations 151 10.2. A generalization of the Lyapunov equation 153 10.3. Matrix pencil regular on the unit circle 159 10.4. Generalization of the discrete Lyapunov equation 163 10.5. Linear and circle dichotomies 170 10.6. Decomposition into invariant subspaces 174 10.7. Remarks about criteria 179 Chapter 11. The Hausdorff Set of a Matrix 183 11.1. The simplest properties of the Hausdorff set 183 11.2. The Hausdorff set of a second order matrix 186 11.3. Geometry of Hausdorff sets and invariant subspaces 193 11.4. Estimates for the resolvent and matrix exponential 201 11.5. Sectorial operators 206 Part 3. Application of Spectral Analysis. The Most Important Algorithms 213 Chapter 12. Matrix Operators as Models of Differential Operators 215 12.1. A typical example of a sectorial operator 215 12.2. Finite dimensional models of first order operators 221 12.3. Finite dimensional approximations of second order operators 225 12.4. The finite element method 229 CONTKNTS ix Chapter 13. Application of the Theory of Functions of Complex Variables 235 13.1. The Cart an inequality for polynomials 235 13.2. The Caratheodory inequality 238 13.3. The Jensen inequality 239 13.4. Estimates from below for analytic functions 242 13.5. Criterion for stratification of spectrum 245 13.6. Dependence of the dichotomy criterion on the radius 249 13.7. Logarithmic subharmonicity of the resolvent 253 Chapter 14. Computational Algorithms of Spectral Analysis 257 14.1. The computation of solutions to matrix Lyapunov equations 257 14.2. Computation of the spectrum dichotomy of a regular pencil 260 14.3. The orthogonal elimination algorithm 267 14.4. Properties of the orthogonal elimination algorithm 273 14.5. Approximations of invariant subspaces 283 14.6. Stability of the orthogonal power algorithm 290 14.7. Bases for almost invariant subspaces 294 Bibliography 301 Index 303
any_adam_object 1
author Godunov, Sergej K.
author_facet Godunov, Sergej K.
author_role aut
author_sort Godunov, Sergej K.
author_variant s k g sk skg
building Verbundindex
bvnumber BV021273732
callnumber-first Q - Science
callnumber-label QA184
callnumber-raw QA184
callnumber-search QA184
callnumber-sort QA 3184
callnumber-subject QA - Mathematics
classification_rvk SK 220
classification_tum MAT 150f
ctrlnum (OCoLC)38494898
(DE-599)BVBBV021273732
dewey-full 512/.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.5
dewey-search 512/.5
dewey-sort 3512 15
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01979nam a2200541 cb4500</leader><controlfield tag="001">BV021273732</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060215 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">051221s1998 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821808885</subfield><subfield code="9">0-8218-0888-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38494898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021273732</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA184</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Godunov, Sergej K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern aspects of linear algebra</subfield><subfield code="c">by S. K. Godunov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">AMS</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 303 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">175</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre linéaire</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calcul matriciel</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equation Ljapunov</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forme quadratique</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inégalité Weyl</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Méthode élément fini</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Opérateurs non auto-adjoints</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Principe variationnel</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Résolvante</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie spectrale (Mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorème Schur</subfield><subfield code="2">jussieu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonselfadjoint operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">175</subfield><subfield code="w">(DE-604)BV000002394</subfield><subfield code="9">175</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014594820&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014594820</subfield></datafield></record></collection>
id DE-604.BV021273732
illustrated Illustrated
indexdate 2024-12-23T19:11:53Z
institution BVB
isbn 0821808885
language English
Russian
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014594820
oclc_num 38494898
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical XVI, 303 S. graph. Darst.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher AMS
record_format marc
series Translations of mathematical monographs
series2 Translations of mathematical monographs
spellingShingle Godunov, Sergej K.
Modern aspects of linear algebra
Translations of mathematical monographs
Algèbre linéaire ram
Calcul matriciel jussieu
Equation Ljapunov jussieu
Forme quadratique jussieu
Inégalité Weyl jussieu
Méthode élément fini jussieu
Opérateurs non auto-adjoints ram
Principe variationnel jussieu
Résolvante jussieu
Théorie spectrale (Mathématiques) ram
Théorème Schur jussieu
Algebras, Linear
Nonselfadjoint operators
Spectral theory (Mathematics)
Lineare Algebra (DE-588)4035811-2 gnd
subject_GND (DE-588)4035811-2
title Modern aspects of linear algebra
title_auth Modern aspects of linear algebra
title_exact_search Modern aspects of linear algebra
title_full Modern aspects of linear algebra by S. K. Godunov
title_fullStr Modern aspects of linear algebra by S. K. Godunov
title_full_unstemmed Modern aspects of linear algebra by S. K. Godunov
title_short Modern aspects of linear algebra
title_sort modern aspects of linear algebra
topic Algèbre linéaire ram
Calcul matriciel jussieu
Equation Ljapunov jussieu
Forme quadratique jussieu
Inégalité Weyl jussieu
Méthode élément fini jussieu
Opérateurs non auto-adjoints ram
Principe variationnel jussieu
Résolvante jussieu
Théorie spectrale (Mathématiques) ram
Théorème Schur jussieu
Algebras, Linear
Nonselfadjoint operators
Spectral theory (Mathematics)
Lineare Algebra (DE-588)4035811-2 gnd
topic_facet Algèbre linéaire
Calcul matriciel
Equation Ljapunov
Forme quadratique
Inégalité Weyl
Méthode élément fini
Opérateurs non auto-adjoints
Principe variationnel
Résolvante
Théorie spectrale (Mathématiques)
Théorème Schur
Algebras, Linear
Nonselfadjoint operators
Spectral theory (Mathematics)
Lineare Algebra
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014594820&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000002394
work_keys_str_mv AT godunovsergejk modernaspectsoflinearalgebra