Handbook of elliptic and hyperelliptic curve cryptography

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton Chapman & Hall/CRC 2006
Schriftenreihe:Discrete mathematics and its applications
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV021273577
003 DE-604
005 20120315
007 t
008 051221s2006 xxu |||| 00||| eng d
010 |a 2005041841 
020 |a 9781584885184  |9 978-1-58488-518-4 
020 |a 1584885181  |c acidfree paper  |9 1-58488-518-1 
035 |a (OCoLC)58546549 
035 |a (DE-599)BVBBV021273577 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-91G  |a DE-20  |a DE-703  |a DE-19  |a DE-634  |a DE-83  |a DE-739  |a DE-706 
050 0 |a QA567.2.E44 
082 0 |a 516.3/52  |2 22 
084 |a SK 170  |0 (DE-625)143221:  |2 rvk 
084 |a ST 276  |0 (DE-625)143642:  |2 rvk 
084 |a 94A60  |2 msc 
084 |a MAT 145f  |2 stub 
084 |a 14G50  |2 msc 
084 |a DAT 465f  |2 stub 
245 1 0 |a Handbook of elliptic and hyperelliptic curve cryptography  |c Henri Cohen ...[u.a.] 
264 1 |a Boca Raton  |b Chapman & Hall/CRC  |c 2006 
300 |a XXXIV, 808 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Discrete mathematics and its applications 
650 4 |a Automates mathématiques, Théorie des - Guides, manuels, etc 
650 4 |a Courbes elliptiques - Guides, manuels, etc 
650 4 |a Cryptographie - Mathématiques - Guides, manuels, etc 
650 4 |a Mathematik 
650 4 |a Curves, Elliptic  |v Handbooks, manuals, etc 
650 4 |a Cryptography  |x Mathematics  |v Handbooks, manuals, etc 
650 4 |a Machine theory  |v Handbooks, manuals, etc 
650 0 7 |a Elliptische Kurve  |0 (DE-588)4014487-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kryptologie  |0 (DE-588)4033329-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Kryptologie  |0 (DE-588)4033329-2  |D s 
689 0 1 |a Elliptische Kurve  |0 (DE-588)4014487-2  |D s 
689 0 |5 DE-604 
700 1 |a Cohen, Henri  |d 1947-  |e Sonstige  |0 (DE-588)1018621717  |4 oth 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014594665&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 

Datensatz im Suchindex

DE-BY-TUM_call_number 0104/DAT 465f 2006 B 672
DE-BY-TUM_katkey 1535217
DE-BY-TUM_media_number 040020292831
_version_ 1816712534920527872
adam_text Table of Contents List of Algorithms.xxiii Preface.xxix 1 Introduction to Public-Key Cryptography.1 1.1 Cryptography.2 1.2 Complexity.2 1.3 Public-key cryptography.5 1.4 Factorization and primality.6 1.4.1 Primality.6 1.4.2 Complexity of factoring.6 1.4.3 RSA.7 1.5 Discrete logarithm systems.8 1.5.1 Generic discrete logarithm systems.8 1.5.2 Discrete logarithm systems with bilinear structure . 9 1.6 Protocols.9 1.6.1 Diffie-Hellman key exchange.10 1.6.2 Asymmetric Diffie-Hellman and EIGamal encryption . . . .10 1.6.3 Signature scheme of EIGamal-type.12 1.6.4 Tripartite key exchange.13 1.7 Other problems.14 I Mathematical Background 2 Algebraic Background.19 2.1 Elementary algebraic structures.19 2.1.1 Groups.19 2.1.2 Rings.21 2.1.3 Fields.23 2.1.4 Vector spaces.24 2.2 Introduction to number theory.24 2.2.1 Extension of fields.25 2.2.2 Algebraic closure.27 2.2.3 Galois theory.27 2.2.4 Number fields.29 2.3 Finite fields.31 2.3.1 First properties.31 2.3.2 Algebraic extensions of a finite field.32 2.3.3 Finite field representations.33 2.3.4 Finite field characters.35 XI XII Table of Contents 3 Background on p-adic Numbers.39 3.1 Definition of Qp and first properties.39 3.2 Complete discrete valuation rings and fields.41 3.2.1 First properties.41 3.2.2 Lifting a solution of a polynomial equation.42 3.3 The field Qp and its extensions.43 3.3.1 Unramified extensions.43 3.3.2 Totally ramified extensions.43 3.3.3 Multiplicative system of representatives.44 3.3.4 Witt vectors.44 4 Background on Curves and Jacobians.45 4.1 Algebraic varieties.45 4.1.1 Affine and projective varieties.46 4.2 Function fields.51 4.2.1 Morphisms of affine varieties.52 4.2.2 Rational maps of affine varieties.53 4.2.3 Regular functions.54 4.2.4 Generalization to projective varieties.55 4.3 Abelian varieties.55 4.3.1 Algebraic groups.55 4.3.2 Birational group laws.56 4.3.3 Homomorphisms of abelian varieties.57 4.3.4 Isomorphisms and isogenies.58 4.3.5 Points of finite order and Tate modules.60 4.3.6 Background on ¿-adic representations.61 4.3.7 Complex multiplication.63 4.4 Arithmetic of curves.64 4.4.1 Local rings and smoothness.64 4.4.2 Genus and Riemann-Roch theorem.66 4.4.3 Divisor class group.76 4.4.4 The Jacobian variety of curves.77 4.4.5 Jacobian variety of elliptic curves and group law.79 4.4.6 Ideal class group.81 4.4.7 Class groups of hyperelliptic curves.83 5 Varieties over Special Fields.87 5.1 Varieties over the field of complex numbers.87 5.1.1 Analytic varieties.87 5.1.2 Curves over C.89 5.1.3 Complex tori and abelian varieties.92 5.1.4 Isogenies of abelian varieties over C.94 5.1.5 Elliptic curves over C.95 5.1.6 Hyperelliptic curves over C.100 5.2 Varieties over finite fields.108 5.2.1 The Frobenius morphism.109 5.2.2 The characteristic polynomial of the Frobenius endomorphism . .109 5.2.3 The theorem of Hasse-Weil for Jacobians.110 5.2.4 Tate’s isogeny theorem.112 Table of Contents xiii 6 Background on Pairings.115 6.1 General duality results.115 6.2 The Tate pairing.116 6.3 Pairings over local fields. . . 117 6.3.1 The local Tate pairing.118 6.3.2 The Lichtenbaum pairing on Jacobian varieties.119 6.4 An explicit pairing.122 6.4.1 The Tate-Lichtenbaum pairing.122 6.4.2 Size of the embedding degree.123 7 Background on Weil Descent.125 7.1 Affine Weil descent.125 7.2 The projective Weil descent.127 7.3 Descent by Galois theory.128 7.4 Zariski closed subsets inside of the Weil descent.129 7.4.1 Hyperplane sections.129 7.4.2 Trace zero varieties.130 7.4.3 Covers of curves.131 7.4.4 The GHS approach.131 8 Cohomological Background on Point Counting.133 8.1 General principle.133 8.1.1 Zeta function and the Weil conjectures.134 8.1.2 Cohomology and Lefschetz fixed point formula.135 8.2 Overview of T-adic methods.137 8.3 Overview of p-adic methods.138 8.3.1 Serre-Tate canonical lift.138 8.3.2 Monsky-Washnitzer cohomology.139 II Elementary Arithmetic 9 Exponentiation.145 9.1 Generic methods.146 9.1.1 Binary methods.146 9.1.2 Left-to-right 2fe-ary algorithm.148 9.1.3 Sliding window method.149 9.1.4 Signed-digit recoding.150 9.1.5 Multi-exponentiation.154 9.2 Fixed exponent.157 9.2.1 Introduction to addition chains.157 9.2.2 Short addition chains search.160 9.2.3 Exponentiation using addition chains.163 9.3 Fixed base point.164 9.3.1 Yao’s method.165 9.3.2 Euclidean method.166 9.3.3 Fixed-base comb method.166 x/V Table of Contents 10 Integer Arithmetic.169 10.1 Multiprecision integers.170 10.1.1 Introduction.170 10.1.2 Internal representation.171 10.1.3 Elementary operations.172 10.2 Addition and subtraction.172 10.3 Multiplication.174 10.3.1 Schoolbook multiplication.174 10.3.2 Karatsuba multiplication.176 10.3.3 Squaring.177 10.4 Modular reduction.178 10.4.1 Barrett method.178 10.4.2 Montgomery reduction.180 10.4.3 Special moduli.182 10.4.4 Reduction modulo several primes.184 10.5 Division.184 10.5.1 Schoolbook division.185 10.5.2 Recursive division.187 10.5.3 Exact division.189 10.6 Greatest common divisor.190 10.6.1 Euclid extended gcd.191 10.6.2 Lehmer extended gcd.192 10.6.3 Binary extended gcd.194 10.6.4 Chinese remainder theorem.196 10.7 Square root.197 10.7.1 Integer square root.197 10.7.2 Perfect square detection.198 11 Finite Field Arithmetic.201 11.1 Prime fields of odd characteristic.201 11.1.1 Representations and reductions.202 11.1.2 Multiplication.202 11.1.3 Inversion and division.205 11.1.4 Exponentiation.209 11.1.5 Squares and square roots.210 11.2 Finite fields of characteristic 2.213 11.2.1 Representation.213 11.2.2 Multiplication.218 11.2.3 Squaring.221 11.2.4 Inversion and division.222 11.2.5 Exponentiation.225 11.2.6 Square roots and quadratic equations.228 11.3 Optimal extension fields.229 11.3.1 Introduction.229 11.3.2 Multiplication.231 11.3.3 Exponentiation.231 11.3.4 Inversion.233 11.3.5 Squares and square roots.234 11.3.6 Specific improvements for degrees 3 and 5.235 Table of Contents xv 12 Arithmetic of p-adic Numbers.239 12.1 Representation.239 12.1.1 Introduction.239 12.1.2 Computing the Teichmuller modulus.240 12.2 Modular arithmetic.244 12.2.1 Modular multiplication.244 12.2.2 Fast division with remainder.244 12.3 Newton lifting.246 12.3.1 Inverse.247 12.3.2 Inverse square root.248 12.3.3 Square root.249 12.4 Hensel lifting.249 12.5 Frobenius substitution.250 12.5.1 Sparse modulus.251 12.5.2 Teichmuller modulus.252 12.5.3 Gaussian normal basis.252 12.6 Artin-Schreier equations.252 12.6.1 Lercier-Lubicz algorithm.253 12.6.2 Harley’s algorithm.254 12.7 Generalized Newton lifting.256 12.8 Applications.257 12.8.1 Teichmuller lift.257 12.8.2 Logarithm.258 12.8.3 Exponential.259 12.8.4 Trace.260 12.8.5 Norm.261 III Arithmetic of Curves 13 Arithmetic of Elliptic Curves.267 13.1 Summary of background on elliptic curves.268 13.1.1 First properties and group law.268 13.1.2 Scalar multiplication.271 13.1.3 Rational points.272 13.1.4 Torsion points.273 13.1.5 Isomorphisms.273 13.1.6 Isogenies.277 13.1.7 Endomorphisms.277 13.1.8 Cardinality.278 13.2 Arithmetic of elliptic curves defined over Fp.280 13.2.1 Choice of the coordinates.280 13.2.2 Mixed coordinates.283 13.2.3 Montgomery scalar multiplication.285 13.2.4 Parallel implementations.288 13.2.5 Compression of points.288 13.3 Arithmetic of elliptic curves defined over F2 (.289 13.3.1 Choice of the coordinates.291 13.3.2 Faster doublings in affine coordinates.295 XVI Table of Contents 13.3.3 Mixed coordinates.296 13.3.4 Montgomery scalar multiplication.298 13.3.5 Point halving and applications.299 13.3.6 Parallel implementation.302 13.3.7 Compression of points.302 14 Arithmetic of HyperelHptic Curves.303 14.1 Summary of background on hyperelliptic curves.304 14.1.1 Group law for hyperelliptic curves.304 14.1.2 Divisor class group and ideal class group.306 14.1.3 Isomorphisms and isogenies.308 14.1.4 Torsion elements.309 14.1.5 Endomorphisms.310 14.1.6 Cardinality . . .310 14.2 Compression techniques.311 14.2.1 Compression in odd characteristic.311 14.2.2 Compression in even characteristic.313 14.3 Arithmetic on genus 2 curves over arbitrary characteristic . . . . .313 14.3.1 Different cases.314 14.3.2 Addition and doubling in affine coordinates.316 14.4 Arithmetic on genus 2 curves in odd characteristic.320 14.4.1 Projective coordinates.321 14.4.2 New coordinates in odd characteristic.323 14.4.3 Different sets of coordinates in odd characteristic.325 14.4.4 Montgomery arithmetic for genus 2 curves in odd characteristic . . 328 14.5 Arithmetic on genus 2 curves in even characteristic.334 14.5.1 Classification of genus 2 curves in even characteristic. . . . 334 14.5.2 Explicit formulas in even characteristic in affine coordinates . . . 336 14.5.3 Inversion-free systems for even characteristic when h i ^ 0. . . 341 14.5.4 Projective coordinates.341 14.5.5 Inversion-free systems for even characteristic when /i2 = 0. . . 345 14.6 Arithmetic on genus 3 curves.348 14.6.1 Addition in most common case.348 14.6.2 Doubling in most common case.349 14.6.3 Doubling on genus 3 curves for even characteristic when h(x) = 1 351 14.7 Other curves and comparison.352 15 Arithmetic of Special Curves.355 15.1 Koblitz curves.355 15.1.1 Elliptic binary Koblitz curves.356 15.1.2 Generalized Koblitz curves.367 15.1.3 Alternative setup.375 15.2 Scalar multiplication using endomorphisms.376 15.2.1 GLV method. 377 15.2.2 Generalizations.380 15.2.3 Combination of GLV and Koblitz curve strategies.381 15.2.4 Curves with endomorphisms for identity-based parameters. . . 382 15.3 Trace zero varieties.383 15.3.1 Background on trace zero varieties.384 15.3.2 Arithmetic in G.385 Table of Contents_xvii 16 Implementation of Pairings.389 16.1 The basic algorithm.389 16.1.1 The setting.390 16.1.2 Preparation.391 16.1.3 The pairing computation algorithm.391 16.1.4 The case of nontrivial embedding degree A;.393 16.1.5 Comparison with the Weil pairing.395 16.2 Elliptic curves.396 16.2.1 The basic step.396 16.2.2 The representation.396 16.2.3 The pairing algorithm.397 16.2.4 Example.397 16.3 Hyperelliptic curves of genus 2.398 16.3.1 The basic step.399 16.3.2 Representation for k 2.399 16.4 Improving the pairing algorithm.400 16.4.1 Elimination of divisions.400 16.4.2 Choice of the representation.400 16.4.3 Precomputations.400 16.5 Specific improvements for elliptic curves.400 16.5.1 Systems of coordinates.401 16.5.2 Subfield computations.401 16.5.3 Even embedding degree.402 16.5.4 Example.403 IV Point Counting 17 Point Counting on Elliptic and Hyperelliptic Curves.407 17.1 Elementary methods.407 17.1.1 Enumeration.407 17.1.2 Subfield curves.409 17.1.3 Square root algorithms.410 17.1.4 Cartier-Manin operator.411 17.2 Overview of ¿-adic methods.413 17.2.1 Schoof’s algorithm.413 17.2.2 Schoof-Elkies-Atkin’s algorithm.414 17.2.3 Modular polynomials.416 17.2.4 Computing separable isogenies in finite fields of large characteristic . 419 17.2.5 Complete SEA algorithm.421 17.3 Overview of p-adic methods.422 17.3.1 Satoh’s algorithm.423 17.3.2 Arithmetic-Geometric-Mean algorithm.434 17.3.3 Kedlaya’s algorithm.449 xv/// Table of Contents 18 Complex Multiplication.455 18.1 CM for elliptic curves.456 18.1.1 Summary of background.456 18.1.2 Outline of the algorithm.456 18.1.3 Computation of class polynomials.457 18.1.4 Computation of norms.458 18.1.5 The algorithm.459 18.1.6 Experimental results.459 18.2 CM for curves of genus 2.460 18.2.1 Summary of background.462 18.2.2 Outline of the algorithm.462 18.2.3 CM-types and period matrices.463 18.2.4 Computation of the class polynomials.465 18.2.5 Finding a curve.467 18.2.6 The algorithm.469 18.3 CM for larger genera.470 18.3.1 Strategy and difficulties in the general case.470 18.3.2 Hyperelliptic curves with automorphisms.471 18.3.3 The case of genus 3.472 V Computation of Discrete Logarithms 19 Generic Algorithms for Computing Discrete Logarithms.477 19.1 Introduction.478 19.2 Brute force.479 19.3 Chinese remaindering.479 19.4 Baby-step giant-step.480 19.4.1 Adaptive giant-step width.481 19.4.2 Search in intervals and parallelization.482 19.4.3 Congruence classes.483 19.5 Pollard’s rho method.483 19.5.1 Cycle detection.484 19.5.2 Application to DL.488 19.5.3 More on random walks.489 19.5.4 Parallelization.489 19.5.5 Automorphisms of the group.490 19.6 Pollard’s kangaroo method.491 19.6.1 The lambda method.492 19.6.2 Parallelization.493 19.6.3 Automorphisms of the group.494 20 Index Calculus.495 20.1 Introduction.495 20.2 Arithmetical formations.496 20.2.1 Examples of formations.497 20.3 The algorithm.498 20.3.1 On the relation search.499 20.3.2 Parallelization of the relation search.500 Table of Contents_xix 20.3.3 On the linear algebra.500 20.3.4 Filtering.503 20.3.5 Automorphisms of the group.505 20.4 An important example: finite fields.506 20.5 Large primes.507 20.5.1 One large prime.507 20.5.2 Two large primes.508 20.5.3 More large primes.509 21 Index Calculus for Hyperelliptic Curves.511 21.1 General algorithm.511 21.1.1 Hyperelliptic involution.512 21.1.2 Adleman-DeMarrais-Huang.512 21.1.3 Enge-Gaudry.516 21.2 Curves of small genus.516 21.2.1 Gaudry’s algorithm.517 21.2.2 Refined factor base.517 21.2.3 Harvesting.518 21.3 Large prime methods.519 21.3.1 Single large prime.520 21.3.2 Double large primes.521 22 Transfer of Discrete Logarithms.529 22.1 Transfer of discrete logarithms to Fg-vector spaces.529 22.2 Transfer of discrete logarithms by pairings.530 22.3 Transfer of discrete logarithms by Weil descent.530 22.3.1 Summary of background.531 22.3.2 The GHS algorithm.531 22.3.3 Odd characteristic.536 22.3.4 Transfer via covers.538 22.3.5 Index calculus method via hyperplane sections.541 VI Applications 23 Algebraic Realizations of DL Systems.547 23.1 Candidates for secure DL systems.547 23.1.1 Groups with numeration and the DLP.548 23.1.2 Ideal class groups and divisor class groups.548 23.1.3 Examples: elliptic and hyperelliptic curves.551 23.1.4 Conclusion.553 23.2 Security of systems based on Pic£.554 23.2.1 Security under index calculus attacks.554 23.2.2 Transfers by Galois theory.555 23.3 Efficient systems.557 23.3.1 Choice of the finite field.558 23.3.2 Choice of genus and curve equation.560 23.3.3 Special choices of curves and scalar multiplication.563 23.4 Construction of systems.564 XX Table of Contents 23.4.1 Heuristics of class group orders.564 23.4.2 Finding groups of suitable size.565 23.5 Protocols.569 23.5.1 System parameters.569 23.5.2 Protocols on Pic^.570 23.6 Summary.571 24 Pairing-Based Cryptography.573 24.1 Protocols.573 24.1.1 Multiparty key exchange.574 24.1.2 Identity-based cryptography.576 24.1.3 Short signatures.578 24.2 Realization.579 24.2.1 Supersingular elliptic curves.580 24.2.2 Supersingular hyperelliptic curves.584 24.2.3 Ordinary curves with small embedding degree.586 24.2.4 Performance.589 24.2.5 Hash functions on the Jacobian.590 25 Compositeness and Primality Testing - Factoring.591 25.1 Compositeness tests.592 25.1.1 Trial division.592 25.1.2 Fermat tests.593 25.1.3 Rabin-Millertest.594 25.1.4 Lucas pseudoprime tests.595 25.1.5 BPSW tests.596 25.2 Primality tests.596 25.2.1 Introduction.596 25.2.2 Atkin-Morain ECPP test.597 25.2.3 APRCL Jacobi sum test.599 25.2.4 Theoretical considerations and the AKS test.600 25.3 Factoring.601 25.3.1 Pollard’s rho method.601 25.3.2 Pollard’s p - 1 method.603 25.3.3 Factoring with elliptic curves.604 25.3.4 Fermat-Morrison-Brillhart approach.607 VII Realization of Discrete Logarithm Systems 26 Fast Arithmetic in Hardware.617 26.1 Design of cryptographic coprocessors.618 26.1.1 Design criterions.618 26.2 Complement representations of signed numbers.620 26.3 The operation XY + Z.622 26.3.1 Multiplication using left shifts.623 26.3.2 Multiplication using right shifts.624 26.4 Reducing the number of partial products.625 26.4.1 Booth or signed digit encoding.625 Table of Contents_ xxi 26.4.2 Advanced recoding techniques.626 26.5 Accumulation of partial products.627 26.5.1 Full adders.627 26.5.2 Faster carry propagation.628 26.5.3 Analysis of carry propagation.631 26.5.4 Multi-operand operations.633 26.6 Modular reduction in hardware.638 26.7 Finite fields of characteristic 2.641 26.7.1 Polynomial basis.642 26.7.2 Normal basis.643 26.8 Unified multipliers.644 26.9 Modular inversion in hardware.645 27 Smart Cards.647 27.1 History.647 27.2 Smart card properties.648 27.2.1 Physical properties.648 27.2.2 Electrical properties.650 27.2.3 Memory.651 27.2.4 Environment and software.656 27.3 Smart card interfaces.659 27.3.1 Transmission protocols.659 27.3.2 Physical interfaces.663 27.4 Types of smart cards.664 27.4.1 Memory only cards (synchronous cards).664 27.4.2 Microprocessor cards (asynchronous cards).665 28 Practical Attacks on Smart Cards.669 28.1 Introduction.669 28.2 Invasive attacks.670 28.2.1 Gaining access to the chip.670 28.2.2 Reconstitution of the layers.670 28.2.3 Reading the memories.671 28.2.4 Probing.671 28.2.5 FIB and test engineers scheme flaws.672 28.3 Non-invasive attacks.673 28.3.1 Timing attacks.673 28.3.2 Power consumption analysis.675 28.3.3 Electromagnetic radiation attacks.682 28.3.4 Differential fault analysis (DFA) and fault injection attacks . . . 683 29 Mathematical Countermeasures against Side-Channel Attacks 687 29.1 Countermeasures against simple SCA.688 29.1.1 Dummy arithmetic instructions.689 29.1.2 Unified addition formulas.694 29.1.3 Montgomery arithmetic.696 29.2 Countermeasures against differential SCA.697 29.2.1 Implementation of DSCA.698 29.2.2 Scalar randomization.699 29.2.3 Randomization of group elements.700 XXII Table of Contents 29.2.4 Randomization of the curve equation.700 29.3 Countermeasures against Goubin type attacks.703 29.4 Countermeasures against higher order differential SCA.704 29.5 Countermeasures against timing attacks.705 29.6 Countermeasures against fault attacks.705 29.6.1 Countermeasures against simple fault analysis.706 29.6.2 Countermeasures against differential fault analysis.706 29.6.3 Conclusion on fault induction.708 29.7 Countermeasures for special curves.709 29.7.1 Countermeasures against SSCA on Koblitz curves . 709 29.7.2 Countermeasures against DSCA on Koblitz curves.711 29.7.3 Countermeasures for GLV curves.713 30 Random Numbers - Generation and Testing.715 30.1 Definition of a random sequence.715 30.2 Random number generators.717 30.2.1 History.717 30.2.2 Properties of random number generators.718 30.2.3 Types of random number generators.718 30.2.4 Popular random number generators.720 30.3 Testing of random number generators.722 30.4 Testing a device.722 30.5 Statistical (empirical) tests.723 30.6 Some examples of statistical models on S".725 30.7 Hypothesis testings and random sequences.726 30.8 Empirical test examples for binary sequences.727 30.8.1 Random walk.727 30.8.2 Runs.728 30.8.3 Autocorrelation.728 30.9 Pseudorandom number generators.729 30.9.1 Relevant measures.730 30.9.2 Pseudorandom number generators from curves.732 30.9.3 Other applications.735 References.737 Notation Index.777 General Index.785
adam_txt Table of Contents List of Algorithms.xxiii Preface.xxix 1 Introduction to Public-Key Cryptography.1 1.1 Cryptography.2 1.2 Complexity.2 1.3 Public-key cryptography.5 1.4 Factorization and primality.6 1.4.1 Primality.6 1.4.2 Complexity of factoring.6 1.4.3 RSA.7 1.5 Discrete logarithm systems.8 1.5.1 Generic discrete logarithm systems.8 1.5.2 Discrete logarithm systems with bilinear structure . 9 1.6 Protocols.9 1.6.1 Diffie-Hellman key exchange.10 1.6.2 Asymmetric Diffie-Hellman and EIGamal encryption . . . .10 1.6.3 Signature scheme of EIGamal-type.12 1.6.4 Tripartite key exchange.13 1.7 Other problems.14 I Mathematical Background 2 Algebraic Background.19 2.1 Elementary algebraic structures.19 2.1.1 Groups.19 2.1.2 Rings.21 2.1.3 Fields.23 2.1.4 Vector spaces.24 2.2 Introduction to number theory.24 2.2.1 Extension of fields.25 2.2.2 Algebraic closure.27 2.2.3 Galois theory.27 2.2.4 Number fields.29 2.3 Finite fields.31 2.3.1 First properties.31 2.3.2 Algebraic extensions of a finite field.32 2.3.3 Finite field representations.33 2.3.4 Finite field characters.35 XI XII Table of Contents 3 Background on p-adic Numbers.39 3.1 Definition of Qp and first properties.39 3.2 Complete discrete valuation rings and fields.41 3.2.1 First properties.41 3.2.2 Lifting a solution of a polynomial equation.42 3.3 The field Qp and its extensions.43 3.3.1 Unramified extensions.43 3.3.2 Totally ramified extensions.43 3.3.3 Multiplicative system of representatives.44 3.3.4 Witt vectors.44 4 Background on Curves and Jacobians.45 4.1 Algebraic varieties.45 4.1.1 Affine and projective varieties.46 4.2 Function fields.51 4.2.1 Morphisms of affine varieties.52 4.2.2 Rational maps of affine varieties.53 4.2.3 Regular functions.54 4.2.4 Generalization to projective varieties.55 4.3 Abelian varieties.55 4.3.1 Algebraic groups.55 4.3.2 Birational group laws.56 4.3.3 Homomorphisms of abelian varieties.57 4.3.4 Isomorphisms and isogenies.58 4.3.5 Points of finite order and Tate modules.60 4.3.6 Background on ¿-adic representations.61 4.3.7 Complex multiplication.63 4.4 Arithmetic of curves.64 4.4.1 Local rings and smoothness.64 4.4.2 Genus and Riemann-Roch theorem.66 4.4.3 Divisor class group.76 4.4.4 The Jacobian variety of curves.77 4.4.5 Jacobian variety of elliptic curves and group law.79 4.4.6 Ideal class group.81 4.4.7 Class groups of hyperelliptic curves.83 5 Varieties over Special Fields.87 5.1 Varieties over the field of complex numbers.87 5.1.1 Analytic varieties.87 5.1.2 Curves over C.89 5.1.3 Complex tori and abelian varieties.92 5.1.4 Isogenies of abelian varieties over C.94 5.1.5 Elliptic curves over C.95 5.1.6 Hyperelliptic curves over C.100 5.2 Varieties over finite fields.108 5.2.1 The Frobenius morphism.109 5.2.2 The characteristic polynomial of the Frobenius endomorphism . .109 5.2.3 The theorem of Hasse-Weil for Jacobians.110 5.2.4 Tate’s isogeny theorem.112 Table of Contents xiii 6 Background on Pairings.115 6.1 General duality results.115 6.2 The Tate pairing.116 6.3 Pairings over local fields. . . 117 6.3.1 The local Tate pairing.118 6.3.2 The Lichtenbaum pairing on Jacobian varieties.119 6.4 An explicit pairing.122 6.4.1 The Tate-Lichtenbaum pairing.122 6.4.2 Size of the embedding degree.123 7 Background on Weil Descent.125 7.1 Affine Weil descent.125 7.2 The projective Weil descent.127 7.3 Descent by Galois theory.128 7.4 Zariski closed subsets inside of the Weil descent.129 7.4.1 Hyperplane sections.129 7.4.2 Trace zero varieties.130 7.4.3 Covers of curves.131 7.4.4 The GHS approach.131 8 Cohomological Background on Point Counting.133 8.1 General principle.133 8.1.1 Zeta function and the Weil conjectures.134 8.1.2 Cohomology and Lefschetz fixed point formula.135 8.2 Overview of T-adic methods.137 8.3 Overview of p-adic methods.138 8.3.1 Serre-Tate canonical lift.138 8.3.2 Monsky-Washnitzer cohomology.139 II Elementary Arithmetic 9 Exponentiation.145 9.1 Generic methods.146 9.1.1 Binary methods.146 9.1.2 Left-to-right 2fe-ary algorithm.148 9.1.3 Sliding window method.149 9.1.4 Signed-digit recoding.150 9.1.5 Multi-exponentiation.154 9.2 Fixed exponent.157 9.2.1 Introduction to addition chains.157 9.2.2 Short addition chains search.160 9.2.3 Exponentiation using addition chains.163 9.3 Fixed base point.164 9.3.1 Yao’s method.165 9.3.2 Euclidean method.166 9.3.3 Fixed-base comb method.166 x/V Table of Contents 10 Integer Arithmetic.169 10.1 Multiprecision integers.170 10.1.1 Introduction.170 10.1.2 Internal representation.171 10.1.3 Elementary operations.172 10.2 Addition and subtraction.172 10.3 Multiplication.174 10.3.1 Schoolbook multiplication.174 10.3.2 Karatsuba multiplication.176 10.3.3 Squaring.177 10.4 Modular reduction.178 10.4.1 Barrett method.178 10.4.2 Montgomery reduction.180 10.4.3 Special moduli.182 10.4.4 Reduction modulo several primes.184 10.5 Division.184 10.5.1 Schoolbook division.185 10.5.2 Recursive division.187 10.5.3 Exact division.189 10.6 Greatest common divisor.190 10.6.1 Euclid extended gcd.191 10.6.2 Lehmer extended gcd.192 10.6.3 Binary extended gcd.194 10.6.4 Chinese remainder theorem.196 10.7 Square root.197 10.7.1 Integer square root.197 10.7.2 Perfect square detection.198 11 Finite Field Arithmetic.201 11.1 Prime fields of odd characteristic.201 11.1.1 Representations and reductions.202 11.1.2 Multiplication.202 11.1.3 Inversion and division.205 11.1.4 Exponentiation.209 11.1.5 Squares and square roots.210 11.2 Finite fields of characteristic 2.213 11.2.1 Representation.213 11.2.2 Multiplication.218 11.2.3 Squaring.221 11.2.4 Inversion and division.222 11.2.5 Exponentiation.225 11.2.6 Square roots and quadratic equations.228 11.3 Optimal extension fields.229 11.3.1 Introduction.229 11.3.2 Multiplication.231 11.3.3 Exponentiation.231 11.3.4 Inversion.233 11.3.5 Squares and square roots.234 11.3.6 Specific improvements for degrees 3 and 5.235 Table of Contents xv 12 Arithmetic of p-adic Numbers.239 12.1 Representation.239 12.1.1 Introduction.239 12.1.2 Computing the Teichmuller modulus.240 12.2 Modular arithmetic.244 12.2.1 Modular multiplication.244 12.2.2 Fast division with remainder.244 12.3 Newton lifting.246 12.3.1 Inverse.247 12.3.2 Inverse square root.248 12.3.3 Square root.249 12.4 Hensel lifting.249 12.5 Frobenius substitution.250 12.5.1 Sparse modulus.251 12.5.2 Teichmuller modulus.252 12.5.3 Gaussian normal basis.252 12.6 Artin-Schreier equations.252 12.6.1 Lercier-Lubicz algorithm.253 12.6.2 Harley’s algorithm.254 12.7 Generalized Newton lifting.256 12.8 Applications.257 12.8.1 Teichmuller lift.257 12.8.2 Logarithm.258 12.8.3 Exponential.259 12.8.4 Trace.260 12.8.5 Norm.261 III Arithmetic of Curves 13 Arithmetic of Elliptic Curves.267 13.1 Summary of background on elliptic curves.268 13.1.1 First properties and group law.268 13.1.2 Scalar multiplication.271 13.1.3 Rational points.272 13.1.4 Torsion points.273 13.1.5 Isomorphisms.273 13.1.6 Isogenies.277 13.1.7 Endomorphisms.277 13.1.8 Cardinality.278 13.2 Arithmetic of elliptic curves defined over Fp.280 13.2.1 Choice of the coordinates.280 13.2.2 Mixed coordinates.283 13.2.3 Montgomery scalar multiplication.285 13.2.4 Parallel implementations.288 13.2.5 Compression of points.288 13.3 Arithmetic of elliptic curves defined over F2 (.289 13.3.1 Choice of the coordinates.291 13.3.2 Faster doublings in affine coordinates.295 XVI Table of Contents 13.3.3 Mixed coordinates.296 13.3.4 Montgomery scalar multiplication.298 13.3.5 Point halving and applications.299 13.3.6 Parallel implementation.302 13.3.7 Compression of points.302 14 Arithmetic of HyperelHptic Curves.303 14.1 Summary of background on hyperelliptic curves.304 14.1.1 Group law for hyperelliptic curves.304 14.1.2 Divisor class group and ideal class group.306 14.1.3 Isomorphisms and isogenies.308 14.1.4 Torsion elements.309 14.1.5 Endomorphisms.310 14.1.6 Cardinality . . .310 14.2 Compression techniques.311 14.2.1 Compression in odd characteristic.311 14.2.2 Compression in even characteristic.313 14.3 Arithmetic on genus 2 curves over arbitrary characteristic . . . . .313 14.3.1 Different cases.314 14.3.2 Addition and doubling in affine coordinates.316 14.4 Arithmetic on genus 2 curves in odd characteristic.320 14.4.1 Projective coordinates.321 14.4.2 New coordinates in odd characteristic.323 14.4.3 Different sets of coordinates in odd characteristic.325 14.4.4 Montgomery arithmetic for genus 2 curves in odd characteristic . . 328 14.5 Arithmetic on genus 2 curves in even characteristic.334 14.5.1 Classification of genus 2 curves in even characteristic. . . . 334 14.5.2 Explicit formulas in even characteristic in affine coordinates . . . 336 14.5.3 Inversion-free systems for even characteristic when h i ^ 0. . . 341 14.5.4 Projective coordinates.341 14.5.5 Inversion-free systems for even characteristic when /i2 = 0. . . 345 14.6 Arithmetic on genus 3 curves.348 14.6.1 Addition in most common case.348 14.6.2 Doubling in most common case.349 14.6.3 Doubling on genus 3 curves for even characteristic when h(x) = 1 351 14.7 Other curves and comparison.352 15 Arithmetic of Special Curves.355 15.1 Koblitz curves.355 15.1.1 Elliptic binary Koblitz curves.356 15.1.2 Generalized Koblitz curves.367 15.1.3 Alternative setup.375 15.2 Scalar multiplication using endomorphisms.376 15.2.1 GLV method. 377 15.2.2 Generalizations.380 15.2.3 Combination of GLV and Koblitz curve strategies.381 15.2.4 Curves with endomorphisms for identity-based parameters. . . 382 15.3 Trace zero varieties.383 15.3.1 Background on trace zero varieties.384 15.3.2 Arithmetic in G.385 Table of Contents_xvii 16 Implementation of Pairings.389 16.1 The basic algorithm.389 16.1.1 The setting.390 16.1.2 Preparation.391 16.1.3 The pairing computation algorithm.391 16.1.4 The case of nontrivial embedding degree A;.393 16.1.5 Comparison with the Weil pairing.395 16.2 Elliptic curves.396 16.2.1 The basic step.396 16.2.2 The representation.396 16.2.3 The pairing algorithm.397 16.2.4 Example.397 16.3 Hyperelliptic curves of genus 2.398 16.3.1 The basic step.399 16.3.2 Representation for k 2.399 16.4 Improving the pairing algorithm.400 16.4.1 Elimination of divisions.400 16.4.2 Choice of the representation.400 16.4.3 Precomputations.400 16.5 Specific improvements for elliptic curves.400 16.5.1 Systems of coordinates.401 16.5.2 Subfield computations.401 16.5.3 Even embedding degree.402 16.5.4 Example.403 IV Point Counting 17 Point Counting on Elliptic and Hyperelliptic Curves.407 17.1 Elementary methods.407 17.1.1 Enumeration.407 17.1.2 Subfield curves.409 17.1.3 Square root algorithms.410 17.1.4 Cartier-Manin operator.411 17.2 Overview of ¿-adic methods.413 17.2.1 Schoof’s algorithm.413 17.2.2 Schoof-Elkies-Atkin’s algorithm.414 17.2.3 Modular polynomials.416 17.2.4 Computing separable isogenies in finite fields of large characteristic . 419 17.2.5 Complete SEA algorithm.421 17.3 Overview of p-adic methods.422 17.3.1 Satoh’s algorithm.423 17.3.2 Arithmetic-Geometric-Mean algorithm.434 17.3.3 Kedlaya’s algorithm.449 xv/// Table of Contents 18 Complex Multiplication.455 18.1 CM for elliptic curves.456 18.1.1 Summary of background.456 18.1.2 Outline of the algorithm.456 18.1.3 Computation of class polynomials.457 18.1.4 Computation of norms.458 18.1.5 The algorithm.459 18.1.6 Experimental results.459 18.2 CM for curves of genus 2.460 18.2.1 Summary of background.462 18.2.2 Outline of the algorithm.462 18.2.3 CM-types and period matrices.463 18.2.4 Computation of the class polynomials.465 18.2.5 Finding a curve.467 18.2.6 The algorithm.469 18.3 CM for larger genera.470 18.3.1 Strategy and difficulties in the general case.470 18.3.2 Hyperelliptic curves with automorphisms.471 18.3.3 The case of genus 3.472 V Computation of Discrete Logarithms 19 Generic Algorithms for Computing Discrete Logarithms.477 19.1 Introduction.478 19.2 Brute force.479 19.3 Chinese remaindering.479 19.4 Baby-step giant-step.480 19.4.1 Adaptive giant-step width.481 19.4.2 Search in intervals and parallelization.482 19.4.3 Congruence classes.483 19.5 Pollard’s rho method.483 19.5.1 Cycle detection.484 19.5.2 Application to DL.488 19.5.3 More on random walks.489 19.5.4 Parallelization.489 19.5.5 Automorphisms of the group.490 19.6 Pollard’s kangaroo method.491 19.6.1 The lambda method.492 19.6.2 Parallelization.493 19.6.3 Automorphisms of the group.494 20 Index Calculus.495 20.1 Introduction.495 20.2 Arithmetical formations.496 20.2.1 Examples of formations.497 20.3 The algorithm.498 20.3.1 On the relation search.499 20.3.2 Parallelization of the relation search.500 Table of Contents_xix 20.3.3 On the linear algebra.500 20.3.4 Filtering.503 20.3.5 Automorphisms of the group.505 20.4 An important example: finite fields.506 20.5 Large primes.507 20.5.1 One large prime.507 20.5.2 Two large primes.508 20.5.3 More large primes.509 21 Index Calculus for Hyperelliptic Curves.511 21.1 General algorithm.511 21.1.1 Hyperelliptic involution.512 21.1.2 Adleman-DeMarrais-Huang.512 21.1.3 Enge-Gaudry.516 21.2 Curves of small genus.516 21.2.1 Gaudry’s algorithm.517 21.2.2 Refined factor base.517 21.2.3 Harvesting.518 21.3 Large prime methods.519 21.3.1 Single large prime.520 21.3.2 Double large primes.521 22 Transfer of Discrete Logarithms.529 22.1 Transfer of discrete logarithms to Fg-vector spaces.529 22.2 Transfer of discrete logarithms by pairings.530 22.3 Transfer of discrete logarithms by Weil descent.530 22.3.1 Summary of background.531 22.3.2 The GHS algorithm.531 22.3.3 Odd characteristic.536 22.3.4 Transfer via covers.538 22.3.5 Index calculus method via hyperplane sections.541 VI Applications 23 Algebraic Realizations of DL Systems.547 23.1 Candidates for secure DL systems.547 23.1.1 Groups with numeration and the DLP.548 23.1.2 Ideal class groups and divisor class groups.548 23.1.3 Examples: elliptic and hyperelliptic curves.551 23.1.4 Conclusion.553 23.2 Security of systems based on Pic£.554 23.2.1 Security under index calculus attacks.554 23.2.2 Transfers by Galois theory.555 23.3 Efficient systems.557 23.3.1 Choice of the finite field.558 23.3.2 Choice of genus and curve equation.560 23.3.3 Special choices of curves and scalar multiplication.563 23.4 Construction of systems.564 XX Table of Contents 23.4.1 Heuristics of class group orders.564 23.4.2 Finding groups of suitable size.565 23.5 Protocols.569 23.5.1 System parameters.569 23.5.2 Protocols on Pic^.570 23.6 Summary.571 24 Pairing-Based Cryptography.573 24.1 Protocols.573 24.1.1 Multiparty key exchange.574 24.1.2 Identity-based cryptography.576 24.1.3 Short signatures.578 24.2 Realization.579 24.2.1 Supersingular elliptic curves.580 24.2.2 Supersingular hyperelliptic curves.584 24.2.3 Ordinary curves with small embedding degree.586 24.2.4 Performance.589 24.2.5 Hash functions on the Jacobian.590 25 Compositeness and Primality Testing - Factoring.591 25.1 Compositeness tests.592 25.1.1 Trial division.592 25.1.2 Fermat tests.593 25.1.3 Rabin-Millertest.594 25.1.4 Lucas pseudoprime tests.595 25.1.5 BPSW tests.596 25.2 Primality tests.596 25.2.1 Introduction.596 25.2.2 Atkin-Morain ECPP test.597 25.2.3 APRCL Jacobi sum test.599 25.2.4 Theoretical considerations and the AKS test.600 25.3 Factoring.601 25.3.1 Pollard’s rho method.601 25.3.2 Pollard’s p - 1 method.603 25.3.3 Factoring with elliptic curves.604 25.3.4 Fermat-Morrison-Brillhart approach.607 VII Realization of Discrete Logarithm Systems 26 Fast Arithmetic in Hardware.617 26.1 Design of cryptographic coprocessors.618 26.1.1 Design criterions.618 26.2 Complement representations of signed numbers.620 26.3 The operation XY + Z.622 26.3.1 Multiplication using left shifts.623 26.3.2 Multiplication using right shifts.624 26.4 Reducing the number of partial products.625 26.4.1 Booth or signed digit encoding.625 Table of Contents_ xxi 26.4.2 Advanced recoding techniques.626 26.5 Accumulation of partial products.627 26.5.1 Full adders.627 26.5.2 Faster carry propagation.628 26.5.3 Analysis of carry propagation.631 26.5.4 Multi-operand operations.633 26.6 Modular reduction in hardware.638 26.7 Finite fields of characteristic 2.641 26.7.1 Polynomial basis.642 26.7.2 Normal basis.643 26.8 Unified multipliers.644 26.9 Modular inversion in hardware.645 27 Smart Cards.647 27.1 History.647 27.2 Smart card properties.648 27.2.1 Physical properties.648 27.2.2 Electrical properties.650 27.2.3 Memory.651 27.2.4 Environment and software.656 27.3 Smart card interfaces.659 27.3.1 Transmission protocols.659 27.3.2 Physical interfaces.663 27.4 Types of smart cards.664 27.4.1 Memory only cards (synchronous cards).664 27.4.2 Microprocessor cards (asynchronous cards).665 28 Practical Attacks on Smart Cards.669 28.1 Introduction.669 28.2 Invasive attacks.670 28.2.1 Gaining access to the chip.670 28.2.2 Reconstitution of the layers.670 28.2.3 Reading the memories.671 28.2.4 Probing.671 28.2.5 FIB and test engineers scheme flaws.672 28.3 Non-invasive attacks.673 28.3.1 Timing attacks.673 28.3.2 Power consumption analysis.675 28.3.3 Electromagnetic radiation attacks.682 28.3.4 Differential fault analysis (DFA) and fault injection attacks . . . 683 29 Mathematical Countermeasures against Side-Channel Attacks 687 29.1 Countermeasures against simple SCA.688 29.1.1 Dummy arithmetic instructions.689 29.1.2 Unified addition formulas.694 29.1.3 Montgomery arithmetic.696 29.2 Countermeasures against differential SCA.697 29.2.1 Implementation of DSCA.698 29.2.2 Scalar randomization.699 29.2.3 Randomization of group elements.700 XXII Table of Contents 29.2.4 Randomization of the curve equation.700 29.3 Countermeasures against Goubin type attacks.703 29.4 Countermeasures against higher order differential SCA.704 29.5 Countermeasures against timing attacks.705 29.6 Countermeasures against fault attacks.705 29.6.1 Countermeasures against simple fault analysis.706 29.6.2 Countermeasures against differential fault analysis.706 29.6.3 Conclusion on fault induction.708 29.7 Countermeasures for special curves.709 29.7.1 Countermeasures against SSCA on Koblitz curves . 709 29.7.2 Countermeasures against DSCA on Koblitz curves.711 29.7.3 Countermeasures for GLV curves.713 30 Random Numbers - Generation and Testing.715 30.1 Definition of a random sequence.715 30.2 Random number generators.717 30.2.1 History.717 30.2.2 Properties of random number generators.718 30.2.3 Types of random number generators.718 30.2.4 Popular random number generators.720 30.3 Testing of random number generators.722 30.4 Testing a device.722 30.5 Statistical (empirical) tests.723 30.6 Some examples of statistical models on S".725 30.7 Hypothesis testings and random sequences.726 30.8 Empirical test examples for binary sequences.727 30.8.1 Random walk.727 30.8.2 Runs.728 30.8.3 Autocorrelation.728 30.9 Pseudorandom number generators.729 30.9.1 Relevant measures.730 30.9.2 Pseudorandom number generators from curves.732 30.9.3 Other applications.735 References.737 Notation Index.777 General Index.785
any_adam_object 1
any_adam_object_boolean 1
author_GND (DE-588)1018621717
building Verbundindex
bvnumber BV021273577
callnumber-first Q - Science
callnumber-label QA567
callnumber-raw QA567.2.E44
callnumber-search QA567.2.E44
callnumber-sort QA 3567.2 E44
callnumber-subject QA - Mathematics
classification_rvk SK 170
ST 276
classification_tum MAT 145f
DAT 465f
ctrlnum (OCoLC)58546549
(DE-599)BVBBV021273577
dewey-full 516.3/52
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.3/52
dewey-search 516.3/52
dewey-sort 3516.3 252
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
discipline_str_mv Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV021273577</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120315</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051221s2006 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005041841</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584885184</subfield><subfield code="9">978-1-58488-518-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584885181</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">1-58488-518-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)58546549</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021273577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA567.2.E44</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 276</subfield><subfield code="0">(DE-625)143642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">94A60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 145f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14G50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 465f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of elliptic and hyperelliptic curve cryptography</subfield><subfield code="c">Henri Cohen ...[u.a.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">Chapman &amp; Hall/CRC</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIV, 808 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Discrete mathematics and its applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automates mathématiques, Théorie des - Guides, manuels, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Courbes elliptiques - Guides, manuels, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryptographie - Mathématiques - Guides, manuels, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Elliptic</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryptography</subfield><subfield code="x">Mathematics</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine theory</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kryptologie</subfield><subfield code="0">(DE-588)4033329-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kryptologie</subfield><subfield code="0">(DE-588)4033329-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohen, Henri</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1018621717</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014594665&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection>
id DE-604.BV021273577
illustrated Not Illustrated
index_date 2024-07-02T13:45:16Z
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9781584885184
1584885181
language English
lccn 2005041841
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014594665
oclc_num 58546549
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-20
DE-703
DE-19
DE-BY-UBM
DE-634
DE-83
DE-739
DE-706
owner_facet DE-91G
DE-BY-TUM
DE-20
DE-703
DE-19
DE-BY-UBM
DE-634
DE-83
DE-739
DE-706
physical XXXIV, 808 S.
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Chapman & Hall/CRC
record_format marc
series2 Discrete mathematics and its applications
spellingShingle Handbook of elliptic and hyperelliptic curve cryptography
Automates mathématiques, Théorie des - Guides, manuels, etc
Courbes elliptiques - Guides, manuels, etc
Cryptographie - Mathématiques - Guides, manuels, etc
Mathematik
Curves, Elliptic Handbooks, manuals, etc
Cryptography Mathematics Handbooks, manuals, etc
Machine theory Handbooks, manuals, etc
Elliptische Kurve (DE-588)4014487-2 gnd
Kryptologie (DE-588)4033329-2 gnd
subject_GND (DE-588)4014487-2
(DE-588)4033329-2
title Handbook of elliptic and hyperelliptic curve cryptography
title_auth Handbook of elliptic and hyperelliptic curve cryptography
title_exact_search Handbook of elliptic and hyperelliptic curve cryptography
title_exact_search_txtP Handbook of elliptic and hyperelliptic curve cryptography
title_full Handbook of elliptic and hyperelliptic curve cryptography Henri Cohen ...[u.a.]
title_fullStr Handbook of elliptic and hyperelliptic curve cryptography Henri Cohen ...[u.a.]
title_full_unstemmed Handbook of elliptic and hyperelliptic curve cryptography Henri Cohen ...[u.a.]
title_short Handbook of elliptic and hyperelliptic curve cryptography
title_sort handbook of elliptic and hyperelliptic curve cryptography
topic Automates mathématiques, Théorie des - Guides, manuels, etc
Courbes elliptiques - Guides, manuels, etc
Cryptographie - Mathématiques - Guides, manuels, etc
Mathematik
Curves, Elliptic Handbooks, manuals, etc
Cryptography Mathematics Handbooks, manuals, etc
Machine theory Handbooks, manuals, etc
Elliptische Kurve (DE-588)4014487-2 gnd
Kryptologie (DE-588)4033329-2 gnd
topic_facet Automates mathématiques, Théorie des - Guides, manuels, etc
Courbes elliptiques - Guides, manuels, etc
Cryptographie - Mathématiques - Guides, manuels, etc
Mathematik
Curves, Elliptic Handbooks, manuals, etc
Cryptography Mathematics Handbooks, manuals, etc
Machine theory Handbooks, manuals, etc
Elliptische Kurve
Kryptologie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014594665&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT cohenhenri handbookofellipticandhyperellipticcurvecryptography