Mathematics of large eddy simulation of turbulent flows

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Berselli, Luigi C. 1972- (VerfasserIn), Iliescu, Traian (VerfasserIn), Layton, William J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2006
Schriftenreihe:Scientific computation
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV021236410
003 DE-604
005 20051128
007 t|
008 051123s2006 gw d||| |||| 00||| eng d
015 |a 05,N27,1127  |2 dnb 
016 7 |a 975230492  |2 DE-101 
020 |a 3540263160  |c Gb. : EUR 74.85 (freier Pr.), sfr 123.50 (freier Pr.)  |9 3-540-26316-0 
020 |a 9783540263166  |9 978-3-540-26316-6 
024 3 |a 9783540263166 
028 5 2 |a 10948262 
035 |a (OCoLC)62229870 
035 |a (DE-599)BVBBV021236410 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-824  |a DE-634  |a DE-188 
050 0 |a TA357.5.T87 
082 0 |a 532/.0527015118  |2 22 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Berselli, Luigi C.  |d 1972-  |e Verfasser  |0 (DE-588)130510912  |4 aut 
245 1 0 |a Mathematics of large eddy simulation of turbulent flows  |c L. C. Berselli ; T. Iliescu ; W. J. Layton 
264 1 |a Berlin [u.a.]  |b Springer  |c 2006 
300 |a XVII, 348 S.  |b graph. Darst.  |c 235 mm x 155 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Scientific computation 
500 |a Auch als Internetausgabe 
650 4 |a Mathematisches Modell 
650 4 |a Eddies  |x Mathematical models 
650 4 |a Turbulence  |x Mathematical models 
650 0 7 |a LES  |g Strömung  |0 (DE-588)4315616-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Turbulente Strömung  |0 (DE-588)4117265-6  |2 gnd  |9 rswk-swf 
689 0 0 |a LES  |g Strömung  |0 (DE-588)4315616-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Turbulente Strömung  |0 (DE-588)4117265-6  |D s 
689 1 |8 1\p  |5 DE-604 
700 1 |a Iliescu, Traian  |e Verfasser  |0 (DE-588)122385128  |4 aut 
700 1 |a Layton, William J.  |e Verfasser  |0 (DE-588)1020165960  |4 aut 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-014279169 

Datensatz im Suchindex

_version_ 1819664910182776832
adam_text CONTENTS PART I INTRODUCTION 1 INTRODUCTION ............................................... 3 1.1 CHARACTERISTICSOFTURBULENCE ............................. 6 1.2 WHATAREUSEFULAVERAGES?............................... 8 1.3 CONVENTIONALTURBULENCEMODELS .......................... 14 1.4 LARGEEDDYSIMULATION................................... 16 1.5 PROBLEMS WITH BOUNDARIES................................ 17 1.6 THEINTERIORCLOSUREPROBLEMINLES ...................... 18 1.7 EDDYVISCOSITYCLOSUREMODELSINLES..................... 20 1.8 CLOSURE MODELS BASED ON SYSTEMATIC APPROXIMATION......... 22 1.9 MIXEDMODELS........................................... 25 1.10 NUMERICALVALIDATIONANDTESTINGINLES................... 26 2 THE NAVIER-STOKES EQUATIONS .............................. 29 2.1 ANINTRODUCTIONTOTHENSE .............................. 29 2.2 DERIVATIONOFTHENSE ................................... 32 2.3 BOUNDARY CONDITIONS .................................... 36 2.4 AFEWRESULTSONTHEMATHEMATICSOFTHENSE.............. 37 2.4.1 NOTATIONANDFUNCTIONSPACES ..................... 38 2.4.2 WEAKSOLUTIONSINTHESENSEOFLERAY-HOPF.......... 42 2.4.3 THEENERGYBALANCE.............................. 43 2.4.4 EXISTENCEOFWEAKSOLUTIONS ....................... 47 2.4.5 MOREREGULARSOLUTIONS ........................... 54 2.5 SOMEREMARKSONTHEEULEREQUATIONS..................... 62 2.6 THESTOCHASTICNAVIER-STOKESEQUATIONS.................... 65 2.7 CONCLUSIONS............................................. 68 XIV CONTENTS PART II EDDY VISCOSITY MODELS 3 INTRODUCTION TO EDDY VISCOSITY MODELS .................... 71 3.1 INTRODUCTION............................................ 71 3.2 EDDYVISCOSITYMODELS................................... 72 3.3 VARIATIONS ON THE SMAGORINSKY MODEL ...................... 77 3.3.1 VANDRIESTDAMPING.............................. 78 3.3.2 ALTERNATESCALINGS................................ 78 3.3.3 MODELS ACTING ONLY ON THE SMALLEST RESOLVED SCALES.. 80 3.3.4 GERMANO SDYNAMICMODEL........................ 80 3.4 MATHEMATICAL PROPERTIES OF THE SMAGORINSKY MODEL.......... 81 3.4.1 FURTHER PROPERTIES OF MONOTONE OPERATORS........... 93 3.5 BACKSCATTERANDTHEEDDYVISCOSITYMODELS.................102 3.6 CONCLUSIONS.............................................103 4 IMPROVED EDDY VISCOSITY MODELS .......................... 105 4.1 INTRODUCTION............................................105 4.2 THEGAUSSIAN-LAPLACIANMODEL(GL) ......................111 4.2.1 MATHEMATICALPROPERTIES ..........................112 4.3 K YY YY MODELING..........................................117 4.3.1 SELECTIVEMODELS .................................118 4.4 CONCLUSIONS.............................................121 5 UNCERTAINTIES IN EDDY VISCOSITY MODELS AND IMPROVED ESTIMATES OF TURBULENT FLOW FUNCTIONALS ............................. 123 5.1 INTRODUCTION............................................123 5.2 THE SENSITIVITY EQUATIONS OF EDDY VISCOSITY MODELS .........124 5.2.1 CALCULATING F YY = YY YYYY F ..............................126 5.2.2 BOUNDARY CONDITIONS FOR THE SENSITIVITIES............127 5.3 IMPROVING ESTIMATES OF FUNCTIONALS OF TURBULENT QUANTITIES ..127 5.4 CONCLUSIONS: ARE U AND P ENOUGH? ........................130 PART III ADVANCED MODELS 6 BASIC CRITERIA FOR SUBFILTER-SCALE MODELING ................. 135 6.1 MODELING THE SUBFILTER-SCALE STRESSES .......................135 6.2 REQUIREMENTSFORASATISFACTORYCLOSUREMODEL..............136 CONTENTS XV 7 CLOSURE BASED ON WAVENUMBER ASYMPTOTICS ............... 143 7.1 THEGRADIENT(TAYLOR)LESMODEL.........................145 7.1.1 DERIVATIONOFTHEGRADIENTLESMODEL ..............145 7.1.2 MATHEMATICAL ANALYSIS OF THE GRADIENT LES MODEL ...147 7.1.3 NUMERICALVALIDATIONANDTESTING ..................153 7.2 THERATIONALLESMODEL(RLES) .........................154 7.2.1 MATHEMATICAL ANALYSIS FOR THE RATIONAL LES MODEL...157 7.2.2 ONTHEBREAKDOWNOFSTRONGSOLUTIONS..............170 7.2.3 NUMERICALVALIDATIONANDTESTING ..................177 7.3 THE HIGHER-ORDER SUBFILTER-SCALE MODEL (HOSFS) ............179 7.3.1 DERIVATIONOFTHEHOSFSMODEL....................179 7.3.2 MATHEMATICAL ANALYSIS OF THE HOSFS MODEL.........181 7.3.3 NUMERICALVALIDATIONANDTESTING ..................188 7.4 CONCLUSIONS.............................................193 8 SCALE SIMILARITY MODELS .................................... 195 8.1 INTRODUCTION............................................195 8.1.1 THEBARDINAMODEL...............................195 8.2 OTHERSCALESIMILARITYMODELS.............................200 8.2.1 GERMANODYNAMICMODEL .........................200 8.2.2 THEFILTEREDBARDINAMODEL .......................200 8.2.3 THEMIXED-SCALESIMILARITYMODEL ..................201 8.3 RECENT IDEAS IN SCALE SIMILARITY MODELS ....................201 8.4 THE S 4 =SKEW-SYMMETRICSCALESIMILARITYMODEL ...........205 8.4.1 ANALYSISOFTHEMODEL.............................206 8.4.2 LIMIT CONSISTENCY AND VERIFIABILITY OF THE S 4 MODEL ..208 8.5 THEFIRSTENERGY-SPONGESCALESIMILARITYMODEL.............213 8.5.1 MOREACCURATE MODELS..........................217 8.6 THE HIGHER ORDER, STOLZ-ADAMS DECONVOLUTION MODELS.......219 8.6.1 THEVANCITTERTAPPROXIMATIONS ...................220 8.7 CONCLUSIONS.............................................223 PART IV BOUNDARY CONDITIONS 9 FILTERING ON BOUNDED DOMAINS ............................ 227 9.1 FILTERSWITHNONCONSTANTRADIUS ..........................229 9.1.1 DEFINITIONOFTHEFILTERING .........................230 9.1.2 SOME ESTIMATES OF THE COMMUTATION ERROR ..........234 9.2 FILTERSWITHCONSTANTRADIUS .............................240 9.2.1 DERIVATION OF THE BOUNDARY COMMUTATION ERROR(BCE).....................................241 9.2.2 ESTIMATESOFTHEBCE.............................246 9.2.3 ERROR ESTIMATES FOR A WEAK FORM OF THE BCE........249 9.2.4 NUMERICALAPPROXIMATIONOFTHEBCE ..............250 9.3 CONCLUSIONS.............................................251 XVI CONTENTS 10 NEAR WALL MODELS IN LES .................................. 253 10.1 INTRODUCTION............................................253 10.2 WALL LAWS IN CONVENTIONAL TURBULENCE MODELING ............254 10.3 CURRENTIDEASINNEARWALLMODELINGFORLES...............256 10.4 NEWPERSPECTIVESINNEARWALLMODELS.....................259 10.4.1 THE 1 / 7THPOWERLAWIN3D.......................261 10.4.2 THE 1 /N THPOWERLAWIN3D.......................266 10.4.3 A NEAR WALL MODEL FOR RECIRCULATING FLOWS..........268 10.4.4 A NWM FOR TIME-FLUCTUATING QUANTITIES ............270 10.4.5 A NWM FOR REATTACHMENT AND SEPARATION POINTS ....271 10.5 CONCLUSIONS.............................................272 PART V NUMERICAL TESTS 11 VARIATIONAL APPROXIMATION OF LES MODELS ................. 275 11.1 INTRODUCTION............................................275 11.2 LES MODELS AND THEIR VARIATIONAL APPROXIMATION............276 11.2.1 VARIATIONALFORMULATION...........................277 11.3 EXAMPLESOFVARIATIONALMETHODS..........................281 11.3.1 SPECTRALMETHODS ................................281 11.3.2 FINITEELEMENTMETHODS...........................282 11.3.3 SPECTRALELEMENTMETHODS.........................282 11.4 NUMERICAL ANALYSIS OF VARIATIONAL APPROXIMATIONS...........282 11.5 INTRODUCTION TO VARIATIONAL MULTISCALE METHODS (VMM) ......285 11.6 EDDYVISCOSITYACTINGONFLUCTUATIONSASAVMM...........289 11.7 CONCLUSIONS.............................................293 12 TEST PROBLEMS FOR LES .................................... 295 12.1 GENERALCOMMENTS ......................................295 12.2 TURBULENTCHANNELFLOWS.................................296 12.2.1 COMPUTATIONALSETTING............................297 12.2.2 DEFINITION OF RE YY .................................298 12.2.3 INITIALCONDITIONS ................................300 12.2.4 STATISTICS........................................301 12.2.5 LESMODELSTESTED...............................303 12.2.6 NUMERICAL METHOD AND NUMERICAL SETTING ...........305 12.2.7 A POSTERIORI TESTS FOR RE YY =180...................307 12.2.8 A POSTERIORI TESTS FOR RE YY =395...................310 12.2.9 BACKSCATTER IN THE RATIONAL LES MODEL .............312 12.2.10 NUMERICALRESULTS................................315 12.2.11 SUMMARYOFRESULTS ..............................318 CONTENTS XVII 12.3 A FEW REMARKS ON ISOTROPIC HOMOGENEOUS TURBULENCE .......320 12.3.1 COMPUTATIONALSETTING............................321 12.3.2 INITIALCONDITIONS ................................322 12.3.3 EXPERIMENTALRESULTS.............................323 12.3.4 COMPUTATIONALCOST..............................323 12.3.5 LES OF THE COMTE-BELLOT CORRSIN EXPERIMENT ........324 12.4 FINALREMARKS ..........................................324 REFERENCES ..................................................... 327 INDEX .......................................................... 345
any_adam_object 1
author Berselli, Luigi C. 1972-
Iliescu, Traian
Layton, William J.
author_GND (DE-588)130510912
(DE-588)122385128
(DE-588)1020165960
author_facet Berselli, Luigi C. 1972-
Iliescu, Traian
Layton, William J.
author_role aut
aut
aut
author_sort Berselli, Luigi C. 1972-
author_variant l c b lc lcb
t i ti
w j l wj wjl
building Verbundindex
bvnumber BV021236410
callnumber-first T - Technology
callnumber-label TA357
callnumber-raw TA357.5.T87
callnumber-search TA357.5.T87
callnumber-sort TA 3357.5 T87
callnumber-subject TA - General and Civil Engineering
classification_rvk SK 950
ctrlnum (OCoLC)62229870
(DE-599)BVBBV021236410
dewey-full 532/.0527015118
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 532 - Fluid mechanics
dewey-raw 532/.0527015118
dewey-search 532/.0527015118
dewey-sort 3532 9527015118
dewey-tens 530 - Physics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02304nam a2200565 c 4500</leader><controlfield tag="001">BV021236410</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20051128 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">051123s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N27,1127</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">975230492</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540263160</subfield><subfield code="c">Gb. : EUR 74.85 (freier Pr.), sfr 123.50 (freier Pr.)</subfield><subfield code="9">3-540-26316-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540263166</subfield><subfield code="9">978-3-540-26316-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540263166</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10948262</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62229870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021236410</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA357.5.T87</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.0527015118</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berselli, Luigi C.</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130510912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics of large eddy simulation of turbulent flows</subfield><subfield code="c">L. C. Berselli ; T. Iliescu ; W. J. Layton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 348 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Scientific computation</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eddies</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulence</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">LES</subfield><subfield code="g">Strömung</subfield><subfield code="0">(DE-588)4315616-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">LES</subfield><subfield code="g">Strömung</subfield><subfield code="0">(DE-588)4315616-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iliescu, Traian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122385128</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Layton, William J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1020165960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=014279169&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014279169</subfield></datafield></record></collection>
id DE-604.BV021236410
illustrated Illustrated
indexdate 2024-12-23T18:51:21Z
institution BVB
isbn 3540263160
9783540263166
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-014279169
oclc_num 62229870
open_access_boolean
owner DE-824
DE-634
DE-188
owner_facet DE-824
DE-634
DE-188
physical XVII, 348 S. graph. Darst. 235 mm x 155 mm
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Springer
record_format marc
series2 Scientific computation
spellingShingle Berselli, Luigi C. 1972-
Iliescu, Traian
Layton, William J.
Mathematics of large eddy simulation of turbulent flows
Mathematisches Modell
Eddies Mathematical models
Turbulence Mathematical models
LES Strömung (DE-588)4315616-2 gnd
Turbulente Strömung (DE-588)4117265-6 gnd
subject_GND (DE-588)4315616-2
(DE-588)4117265-6
title Mathematics of large eddy simulation of turbulent flows
title_auth Mathematics of large eddy simulation of turbulent flows
title_exact_search Mathematics of large eddy simulation of turbulent flows
title_full Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton
title_fullStr Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton
title_full_unstemmed Mathematics of large eddy simulation of turbulent flows L. C. Berselli ; T. Iliescu ; W. J. Layton
title_short Mathematics of large eddy simulation of turbulent flows
title_sort mathematics of large eddy simulation of turbulent flows
topic Mathematisches Modell
Eddies Mathematical models
Turbulence Mathematical models
LES Strömung (DE-588)4315616-2 gnd
Turbulente Strömung (DE-588)4117265-6 gnd
topic_facet Mathematisches Modell
Eddies Mathematical models
Turbulence Mathematical models
LES Strömung
Turbulente Strömung
url http://deposit.dnb.de/cgi-bin/dokserv?id=2647699&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279169&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT berselliluigic mathematicsoflargeeddysimulationofturbulentflows
AT iliescutraian mathematicsoflargeeddysimulationofturbulentflows
AT laytonwilliamj mathematicsoflargeeddysimulationofturbulentflows