Discrete convex analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Murota, Kazuo 1955- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Philadelphia SIAM 2003
Schriftenreihe:SIAM monographs on discrete mathematics and applications
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV020014985
003 DE-604
005 20230412
007 t|
008 050831s2003 xxu|||| |||| 00||| eng d
010 |a 2003042468 
020 |a 9781611972559  |c pbk  |9 978-1-611972-55-9 
020 |a 0898715407  |9 0-89871-540-7 
035 |a (OCoLC)249472583 
035 |a (DE-599)BVBBV020014985 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-91G  |a DE-634  |a DE-83  |a DE-188  |a DE-739 
050 0 |a QA331.5 
082 0 |a 515.8 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a 17,1  |2 ssgn 
084 |a 52Cxx  |2 msc 
084 |a MAT 913f  |2 stub 
100 1 |a Murota, Kazuo  |d 1955-  |e Verfasser  |0 (DE-588)121432424  |4 aut 
245 1 0 |a Discrete convex analysis  |c Kazuo Murota 
264 1 |a Philadelphia  |b SIAM  |c 2003 
300 |a XXII, 389 S.  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a SIAM monographs on discrete mathematics and applications 
650 4 |a aConvex functions 
650 4 |a aConvex sets 
650 4 |a aMathematical analysis 
650 0 7 |a Konvexe Funktion  |0 (DE-588)4139679-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Menge  |0 (DE-588)4165212-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Analysis  |0 (DE-588)4138566-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Konvexe Analysis  |0 (DE-588)4138566-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Konvexe Menge  |0 (DE-588)4165212-5  |D s 
689 1 |5 DE-604 
689 2 0 |a Konvexe Funktion  |0 (DE-588)4139679-0  |D s 
689 2 |5 DE-604 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013336463&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-013336463 

Datensatz im Suchindex

DE-BY-TUM_call_number 0104 MAT 913f 2005 A 9429
0303 MAT 913f 2005 L 828
DE-BY-TUM_katkey 1520961
DE-BY-TUM_location 01
03
DE-BY-TUM_media_number 040020059678
040071067562
040071067573
040071067584
040071067595
040071067608
_version_ 1820808573633953792
adam_text DISCRETE CONVEX ANALYSIS *O KAZUO MUROTA UNIVERSITY OF TOKYO; PRESTO, JST TOKYO, JAPAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS PHILADELPHIA CONTENTS LIST OF FIGURES XI NOTATION XIII PREFACE XXI 1 INTRODUCTION TO THE CENTRAL CONCEPTS 1 1.1 AIM AND HISTORY OF DISCRETE CONVEX ANALYSIS 1 1.1.1 AIM 1 1.1.2 HISTORY 5 1.2 USEFUL PROPERTIES OF CONVEX FUNCTIONS 9 1.3 SUBMODULAR FUNCTIONS AND BASE POLYHEDRA 15 1.3.1 SUBMODULAR FUNCTIONS 16 1.3.2 BASE POLYHEDRA 18 1.4 DISCRETE CONVEX FUNCTIONS 21 1.4.1 L-CONVEX FUNCTIONS 21 1.4.2 M-CONVEX FUNCTIONS 25 1.4.3 CONJUGACY 29 1.4.4 DUALITY 32 1.4.5 CLASSES OF DISCRETE CONVEX FUNCTIONS 36 BIBLIOGRAPHICAL NOTES 36 2 CONVEX FUNCTIONS WITH COMBINATORIAL STRUCTURES 39 2.1 QUADRATIC FUNCTIONS 39 2.1.1 CONVEX QUADRATIC FUNCTIONS 39 2.1.2 SYMMETRIC M-MATRICES . 41 2.1.3 COMBINATORIAL PROPERTY OF CONJUGATE FUNCTIONS . . 47 2.1.4 GENERAL QUADRATIC L-/M-CONVEX FUNCTIONS 51 2.2 NONLINEAR NETWORKS 52 2.2.1 REAL-VALUED FLOWS . . 52 2.2.2 INTEGER-VALUED FLOWS 56 2.2.3 TECHNICAL SUPPLEMENTS 58 2.3 SUBSTITUTES AND COMPLEMENTS IN NETWORK FLOWS 61 2.3.1 CONVEXITY AND SUBMODULARITY 61 VI CONTENTS 2.3.2 TECHNICAL SUPPLEMENTS 63 2.4 MATROIDS 68 2.4.1 FROM MATRICES TO MATROIDS 68 2.4.2 FROM POLYNOMIAL MATRICES TO VALUATED MATROIDS . . 71 BIBLIOGRAPHICAL NOTES 74 3 CONVEX ANALYSIS, LINEAR PROGRAMMING, AND INTEGRALITY 77 3.1 CONVEX ANALYSIS 77 3.2 LINEAR PROGRAMMING 86 3.3 INTEGRALITY FOR A PAIR OF INTEGRAL POLYHEDRA 90 3.4 INTEGRALLY CONVEX FUNCTIONS 92 BIBLIOGRAPHICAL NOTES 99 4 M-CONVEX SETS AND SUBMODULAR SET FUNCTIONS 101 4.1 DEFINITION 101 4.2 EXCHANGE AXIOMS 102 4.3 SUBMODULAR FUNCTIONS AND BASE POLYHEDRA 103 4.4 POLYHEDRAL DESCRIPTION OF M-CONVEX SETS 108 4.5 SUBMODULAR FUNCTIONS AS DISCRETE CONVEX FUNCTIONS ILL 4.6 M-CONVEX SETS AS DISCRETE CONVEX SETS 114 4.7 M-CONVEX SETS 116 4.8 M-CONVEX POLYHEDRA 118 BIBLIOGRAPHICAL NOTES 119 5 L-CONVEX SETS AND DISTANCE FUNCTIONS 121 5.1 DEFINITION 121 5.2 DISTANCE FUNCTIONS AND ASSOCIATED POLYHEDRA 122 5.3 POLYHEDRAL DESCRIPTION OF L-CONVEX SETS 123 5.4 L-CONVEX SETS AS DISCRETE CONVEX SETS 125 5.5 L^-CONVEX SETS 128 5.6 L-CONVEX POLYHEDRA 131 BIBLIOGRAPHICAL NOTES 131 6 M-CONVEX FUNCTIONS 133 6.1 M-CONVEX FUNCTIONS AND M^-CONVEX FUNCTIONS 133 6.2 LOCAL EXCHANGE AXIOM 135 6.3 EXAMPLES 138 6.4 BASIC OPERATIONS 142 6.5 SUPERMODULARITY 145 6.6 DESCENT DIRECTIONS 146 6.7 MINIMIZERS 148 6.8 GROSS SUBSTITUTES PROPERTY 152 6.9 PROXIMITY THEOREM 156 6.10 CONVEX EXTENSION 158 6.11 POLYHEDRAL M-CONVEX FUNCTIONS 160 6.12 POSITIVELY HOMOGENEOUS M-CONVEX FUNCTIONS 164 CONTENTS VII 6.13 DIRECTIONAL DERIVATIVES AND SUBGRADIENTS 166 6.14 QUASI M-CONVEX FUNCTIONS 168 BIBLIOGRAPHICAL NOTES 175 7 L-CONVEX FUNCTIONS 177 7.1 L-CONVEX FUNCTIONS AND L^-CONVEX FUNCTIONS 177 7.2 DISCRETE MIDPOINT CONVEXITY 180 7.3 EXAMPLES 181 7.4 BASIC OPERATIONS 183 7.5 MINIMIZERS 185 7.6 PROXIMITY THEOREM 186 7.7 CONVEX EXTENSION 187 7.8 POLYHEDRAL L-CONVEX FUNCTIONS 189 7.9 POSITIVELY HOMOGENEOUS L-CONVEX FUNCTIONS 193 7.10 DIRECTIONAL DERIVATIVES AND SUBGRADIENTS 196 7.11 QUASI L-CONVEX FUNCTIONS 198 BIBLIOGRAPHICAL NOTES 202 8 CONJUGACY AND DUALITY 205 8.1 CONJUGACY 205 8.1.1 SUBMODULARITY UNDER CONJUGACY 206 8.1.2 POLYHEDRAL M-/L-CONVEX FUNCTIONS 208 8.1.3 INTEGRAL M-/L-CONVEX FUNCTIONS 212 8.2 DUALITY 216 8.2.1 SEPARATION THEOREMS 216 8.2.2 FENCHEL-TYPE DUALITY THEOREM 221 8.2.3 IMPLICATIONS 224 8.3 M 2 -CONVEX FUNCTIONS AND L 2 -CONVEX FUNCTIONS 226 8.3.1 M 2 -CONVEX FUNCTIONS 226 8.3.2 L 2 -CONVEX FUNCTIONS 229 8.3.3 RELATIONSHIP 234 8.4 LAGRANGE DUALITY FOR OPTIMIZATION 234 8.4.1 OUTLINE 234 8.4.2 GENERAL DUALITY FRAMEWORK 235 . 8.4.3 LAGRANGIAN FUNCTION BASED ON M-CONVEXITY . . . . 238 8.4.4 SYMMETRY IN DUALITY 241 BIBLIOGRAPHICAL NOTES 244 9 NETWORK FLOWS 245 9.1 MINIMUM COST FLOW AND FENCHEL DUALITY 245 9.1.1 MINIMUM COST FLOW PROBLEM 245 9.1.2 FEASIBILITY 247 9.1.3 OPTIMALITY CRITERIA 248 9.1.4 RELATIONSHIP TO FENCHEL DUALITY 253 9.2 M-CONVEX SUBMODULAR FLOW PROBLEM 255 9.3 FEASIBILITY OF SUBMODULAR FLOW PROBLEM 258 VIII CONTENTS 9.4 OPTIMALITY CRITERION BY POTENTIALS 260 9.5 OPTIMALITY CRITERION BY NEGATIVE CYCLES 263 9.5.1 NEGATIVE-CYCLE CRITERION 263 9.5.2 CYCLE CANCELLATION 265 9.6 NETWORK DUALITY 268 9.6.1 TRANSFORMATION BY NETWORKS 269 9.6.2 TECHNICAL SUPPLEMENTS 273 BIBLIOGRAPHICAL NOTES 278 10 ALGORITHMS 281 10.1 MINIMIZATION OF M-CONVEX FUNCTIONS 281 10.1.1 STEEPEST DESCENT ALGORITHM 281 10.1.2 STEEPEST DESCENT SCALING ALGORITHM 283 10.1.3 DOMAIN REDUCTION ALGORITHM 284 10.1.4 DOMAIN REDUCTION SCALING ALGORITHM 286 10.2 MINIMIZATION OF SUBMODULAR SET FUNCTIONS 288 10.2.1 BASIC FRAMEWORK 288 10.2.2 SCHRIJVER S ALGORITHM 293 10.2.3 IWATA-FLEISCHER-FUJISHIGE S ALGORITHM 296 10.3 MINIMIZATION OF L-CONVEX FUNCTIONS 305 10.3.1 STEEPEST DESCENT ALGORITHM 305 10.3.2 STEEPEST DESCENT SCALING ALGORITHM 308 10.3.3 REDUCTION TO SUBMODULAR FUNCTION MINIMIZATION . . 308 10.4 ALGORITHMS FOR M-CONVEX SUBMODULAR FLOWS 308 10.4.1 TWO-STAGE ALGORITHM 309 10.4.2 SUCCESSIVE SHORTEST PATH ALGORITHM 311 10.4.3 CYCLE-CANCELING ALGORITHM 312 10.4.4 PRIMAL-DUAL ALGORITHM 313 10.4.5 CONJUGATE SCALING ALGORITHM 318 BIBLIOGRAPHICAL NOTES 321 11 APPLICATION TO MATHEMATICAL ECONOMICS 323 11.1 ECONOMIC MODEL WITH INDIVISIBLE COMMODITIES 323 11.2 DIFFICULTY WITH INDIVISIBILITY 327 11.3 M^-CONCAVE UTILITY FUNCTIONS 330 11.4 EXISTENCE OF EQUILIBRIA 334 11.4.1 GENERAL CASE 334 11.4.2 M^-CONVEX CASE 337 11.5 COMPUTATION OF EQUILIBRIA 340 BIBLIOGRAPHICAL NOTES 344 12 APPLICATION TO SYSTEMS ANALYSIS BY MIXED MATRICES 347 12.1 TWO KINDS OF NUMBERS 347 12.2 MIXED MATRICES AND MIXED POLYNOMIAL MATRICES 353 12.3 RANK OF MIXED MATRICES 356 12.4 DEGREE OF DETERMINANT OF MIXED POLYNOMIAL MATRICES 359 CONTENTS JX BIBLIOGRAPHICAL NOTES 361 BIBLIOGRAPHY 363 INDEX 379
any_adam_object 1
author Murota, Kazuo 1955-
author_GND (DE-588)121432424
author_facet Murota, Kazuo 1955-
author_role aut
author_sort Murota, Kazuo 1955-
author_variant k m km
building Verbundindex
bvnumber BV020014985
callnumber-first Q - Science
callnumber-label QA331
callnumber-raw QA331.5
callnumber-search QA331.5
callnumber-sort QA 3331.5
callnumber-subject QA - Mathematics
classification_rvk SK 890
classification_tum MAT 913f
ctrlnum (OCoLC)249472583
(DE-599)BVBBV020014985
dewey-full 515.8
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.8
dewey-search 515.8
dewey-sort 3515.8
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01870nam a2200529zc 4500</leader><controlfield tag="001">BV020014985</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230412 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">050831s2003 xxu|||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003042468</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611972559</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-611972-55-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898715407</subfield><subfield code="9">0-89871-540-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249472583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV020014985</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52Cxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 913f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murota, Kazuo</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121432424</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrete convex analysis</subfield><subfield code="c">Kazuo Murota</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia</subfield><subfield code="b">SIAM</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 389 S.</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SIAM monographs on discrete mathematics and applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aConvex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aConvex sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aMathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=013336463&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013336463</subfield></datafield></record></collection>
id DE-604.BV020014985
illustrated Not Illustrated
indexdate 2024-12-23T18:21:18Z
institution BVB
isbn 9781611972559
0898715407
language English
lccn 2003042468
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013336463
oclc_num 249472583
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-634
DE-83
DE-188
DE-739
owner_facet DE-91G
DE-BY-TUM
DE-634
DE-83
DE-188
DE-739
physical XXII, 389 S. Diagramme
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher SIAM
record_format marc
series2 SIAM monographs on discrete mathematics and applications
spellingShingle Murota, Kazuo 1955-
Discrete convex analysis
aConvex functions
aConvex sets
aMathematical analysis
Konvexe Funktion (DE-588)4139679-0 gnd
Konvexe Menge (DE-588)4165212-5 gnd
Konvexe Analysis (DE-588)4138566-4 gnd
subject_GND (DE-588)4139679-0
(DE-588)4165212-5
(DE-588)4138566-4
title Discrete convex analysis
title_auth Discrete convex analysis
title_exact_search Discrete convex analysis
title_full Discrete convex analysis Kazuo Murota
title_fullStr Discrete convex analysis Kazuo Murota
title_full_unstemmed Discrete convex analysis Kazuo Murota
title_short Discrete convex analysis
title_sort discrete convex analysis
topic aConvex functions
aConvex sets
aMathematical analysis
Konvexe Funktion (DE-588)4139679-0 gnd
Konvexe Menge (DE-588)4165212-5 gnd
Konvexe Analysis (DE-588)4138566-4 gnd
topic_facet aConvex functions
aConvex sets
aMathematical analysis
Konvexe Funktion
Konvexe Menge
Konvexe Analysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013336463&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT murotakazuo discreteconvexanalysis