Double affine Hecke algebras

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tscherednik, Iwan Wladimirowitsch 1951- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2005
Schriftenreihe:London Mathematical Society lecture note series 319
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV019883770
003 DE-604
005 20171124
007 t|
008 050713s2005 xxu |||| 00||| eng d
010 |a 2004054567 
020 |a 0521609186  |c alk. paper  |9 0-521-60918-6 
020 |a 9780521609180  |9 978-0-521-60918-0 
035 |a (OCoLC)55955646 
035 |a (DE-599)BVBBV019883770 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-91G  |a DE-355  |a DE-19  |a DE-824  |a DE-11  |a DE-29T 
050 0 |a QA176 
082 0 |a 512/.22  |2 22 
084 |a SK 320  |0 (DE-625)143231:  |2 rvk 
084 |a MAT 430f  |2 stub 
084 |a MAT 428f  |2 stub 
084 |a MAT 202f  |2 stub 
084 |a PHY 012f  |2 stub 
100 1 |a Tscherednik, Iwan Wladimirowitsch  |d 1951-  |e Verfasser  |0 (DE-588)1104405687  |4 aut 
245 1 0 |a Double affine Hecke algebras  |c Ivan Cherednik 
264 1 |a Cambridge  |b Cambridge University Press  |c 2005 
300 |a XII, 434 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series  |v 319 
650 7 |a Affiene algebra's  |2 gtt 
650 4 |a Analyse harmonique 
650 4 |a Groupes algébriques affines 
650 7 |a Harmonische analyse  |2 gtt 
650 4 |a Hecke, Algèbres de 
650 4 |a Knizhnik-Zamolodchikov, Équations de 
650 4 |a Polynômes orthogonaux 
650 4 |a Hecke algebras 
650 4 |a Affine algebraic groups 
650 4 |a Harmonic analysis 
650 4 |a Knizhnik-Zamoldchikov equations 
650 4 |a Orthogonal polynomials 
650 0 7 |a Hecke-Algebra  |0 (DE-588)4159341-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Affine Algebra  |0 (DE-588)4348233-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Harmonische Analyse  |0 (DE-588)4023453-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Hecke-Algebra  |0 (DE-588)4159341-8  |D s 
689 0 1 |a Affine Algebra  |0 (DE-588)4348233-8  |D s 
689 0 2 |a Harmonische Analyse  |0 (DE-588)4023453-8  |D s 
689 0 |5 DE-604 
830 0 |a London Mathematical Society lecture note series  |v 319  |w (DE-604)BV000000130  |9 319 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013207873&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-013207873 

Datensatz im Suchindex

DE-19_call_number 1601/SI 320-319
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 001z 2001 A 985
DE-BY-TUM_katkey 1515265
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020054037
DE-BY-UBM_katkey 3164594
DE-BY-UBM_media_number 41606801370014
_version_ 1823053089319419904
adam_text Contents Preface v Contents vii 0 Introduction 1 0.0 Universality of Hecke algebras 1 0.0.1 Real and imaginary 1 0.0.2 New vintage 3 0.0.3 Hecke algebras 4 0.1 KZ and Kac Moody algebras 6 0.1.1 Fusion procedure 6 0.1.2 Symmetric spaces 7 0.1.3 KZ and r matrices 8 0.1.4 Integral formulas for KZ 9 0.1.5 From KZ to spherical functions 10 0.2 Double Hecke algebras 11 0.2.1 Missing link? 12 0.2.2 Gauss integrals and sums 14 0.2.3 Difference setup 15 0.2.4 Other directions 16 0.3 DAHA in harmonic analysis 20 0.3.1 Unitary theories 20 0.3.2 From Lie groups to DAHA 22 0.3.3 Elliptic theory 24 0.4 DAHA and Verlinde algebras 27 0.4.1 Abstract Verlinde algebras 27 0.4.2 Operator Verlinde algebras 29 0.4.3 Double Hecke Algebra 30 0.4.4 Nonsymmetric Verlinde algebras 32 0.4.5 Topological interpretation 33 0.5 Applications 35 0.5.1 Flat deformation 35 0.5.2 Rational degeneration 36 0.5.3 Gaussian sums 37 0.5.4 Classification 38 vii 0.5.5 Weyl algebra 39 0.5.6 Diagonal coinvariants 41 1 KZ and QMBP 43 1.0 Soliton connection 43 1.0.1 Classical r matrices 44 1.0.2 Tau function and coinvariant 46 1.0.3 Structure of the chapter 47 1.1 Affine KZ equation 47 1.1.1 Hypergeometric equation 48 1.1.2 AKZ equation of type GL 50 1.1.3 Degenerate affine Hecke algebra 53 1.1.4 Examples 55 1.2 Isomorphism theorems for AKZ 56 1.2.1 Induced representations 57 1.2.2 Monodromy of AKZ 60 1.2.3 Lusztig s isomorphisms 63 1.2.4 AKZ is isomorphic to QMBP 68 1.2.5 The GL case 74 1.3 Isomorphisms for QAKZ 76 1.3.1 Affine Hecke algebras 76 1.3.2 Definition of QAKZ 77 1.3.3 The monodromy cocycle 81 1.3.4 Macdonald s eigenvalue problem 82 1.3.5 Macdonald s operators 88 1.3.6 Arbitrary root systems 90 1.4 DAHA and Macdonald polynomials 92 1.4.1 Rogers polynomials 92 1.4.2 A Hecke algebra approach 94 1.4.3 The GL case 98 1.5 Abstract KZ and elliptic QMBP 105 1.5.1 Abstract r matrices 105 1.5.2 Degenerate DAHA 108 1.5.3 Elliptic QMBP Ill 1.5.4 Double affine KZ 115 1.6 Harish Chandra inversion 116 1.6.1 Affine Weyl groups 118 1.6.2 Degenerate DAHA 119 1.6.3 Differential representation 120 1.6.4 Difference rational case 121 1.6.5 Opdam transform 123 1.6.6 Inverse transform 125 1.7 Factorization and r matrices 128 1.1.1 rsasic trigonometric r matnx iz9 1.7.2 Factorization and r matrices 131 1.7.3 Two conjectures 135 1.7.4 Tau function 136 1.8 Coinvariant, integral formulas 138 1.8.1 Coinvariant 138 1.8.2 Integral formulas . . . . t 141 1.8.3 Proof 144 1.8.4 Comment on KZB 151 2 One dimensional DAHA 154 2.0 Overview 154 2.0.1 Classical origins 154 2.0.2 Main results 155 2.0.3 Other directions 156 2.1 Euler s integral and Gaussian sum 157 2.1.1 Euler s integral, Riemann s zeta 158 2.1.2 Extension by q 159 2.1.3 Mehta Macdonald formula 161 2.1.4 Hankel transform 162 2.1.5 Gaussian sums 163 2.2 Imaginary integration 164 2.2.1 Macdonald s measure 165 2.2.2 Meromorphic continuations 167 2.2.3 Using the constant term 168 2.2.4 Shift operator 171 2.2.5 Applications 173 2.3 Jackson and Gaussian sums 174 2.3.1 Sharp integration 174 2.3.2 Sharp shift formula 177 2.3.3 Roots of unity 178 2.3.4 Gaussian sums 179 2.3.5 Etingof s theorem 181 2.4 Nonsymmetric Hankel transform 184 2.4.1 Operator approach 185 2.4.2 Nonsymmetric theory 187 2.4.3 Rational DAHA 190 2.4.4 Finite dimensional modules 191 2.4.5 Truncated Hankel transform 193 2.5 Polynomial representation 195 2.5.1 Rogers polynomials 195 2.5.2 Nonsymmetric polynomials 197 i 2.5.3 Double affine Hecke algebra 198 { I 2.5.4 Back to Rogers polynomials .201 2.5.5 Conjugated polynomials • 202 2.6 Four corollaries • 203 2.6.1 Basic definitions 204 2.6.2 Creation operators 205 2.6.3 Standard identities 206 2.6.4 Changing kiok+1 208 2.6.5 Shift formula 209 2.6.6 Proof of the shift formula .210 2.7 DAHA Fourier transforms 212 2.7.1 Functional representation 213 2.7.2 Proof of the master formulas 215 2.7.3 Topological interpretation 216 2.7.4 Plancherel formulas .220 2.7.5 Inverse transforms 224 2.8 Finite dimensional modules 225 2.8.1 Generic q, singular k 226 2.8.2 Additional series .231 2.8.3 Fourier transform .232 2.8.4 Roots of unity q, generic k 234 2.9 Classification, Verlinde algebras 237 2.9.1 The classification list .238 2.9.2 Special spherical representations 240 2.9.3 Perfect representations .246 2.10 Little double Hecke algebra 251 2.10.1 The case of odd N .252 2.10.2 Little double H .253 2.10.3 Half integral it 255 2.10.4 The negative case .257 2.10.5 Deforming Verlinde algebras 259 2.11 DAHA and p adic theory 261 2.11.1 Affine Weyl group .262 2.11.2 Affine Hecke algebra .263 2.11.3 Deforming p adic formulas 265 2.11.4 Fourier transform 267 2.11.5 One dimensional case 268 2.12 Degenerate DAHA 270 2.12.1 Definition of DAHA .271 2.12.2 Polynomials, intertwiners 273 2.12.3 Trigonometric degeneration 274 2.12.4 Rational degeneration 277 2.12.5 Diagonal coinvariants 279 3 General theory 281 3.0 Progenitors 281 3.0.1 Fourier theory 281 3.0.2 Perfect representations 286 3.0.3 Affine Hecke algebras 288 3.0.4 Gauss Selberg integrals and sums 289 3.0.5 From generic q to roots of unity 290 3.0.6 Structure of the chapter 292 3.1 Affine Weyl groups 293 3.1.1 Affine roots 294 3.1.2 Affine length function 296 3.1.3 Reduction modulo W 298 3.1 4 Partial ordering in P 302 3.1.5 Arrows in P 304 3.2 Double H«ke algebras ¦ . 305 3.2.1 Main definition 305 3.2 2 Automorphisms 307 3.2.3 Demazure Lus/,tig operators 310 3.2 4 Filiations 311 3.3 Macdonald polynomials 313 3.3.1 Definitions 314 3.32 Spherical polynomials 317 3.3 3 Intertwining operators 320 3.3.4 Some applications . 323 3.4 Polynomial Fourier transforms 325 3.4.1 Norm formulas •• 325 3.4.2 Discretization 326 3.4.3 Basic transforms . 328 3.4.4 Gauss integrals 331 3.5 .Jackson integrals 334 3.5.1 .Jackson transforms 335 3.5.2 Gauss .Jackson integrals 337 3.5 3 Macdonalds cta i lcntities 339 3.6 Seinisimple representations 342 3.0 1 Eigenvectors and semisimpljeity 343 3.6.2 Main theorem 349 3.6.3 Finite dimensional modules 353 3.0 4 Roots of unity 355 3.0 5 Comment on finite stabilizers 356 3.7 The GL case 357 3.7.1 Generic k 358 3.7.2 Periodic skew diagrams • 360 3.7 3 Partitions 362 3.7.4 Equivalence 364 3.7.5 The classification 365 3.7.6 The column row modules 367 3.7.7 General representations 369 3.8 Spherical representations 371 3.8.1 Spherical and cospherical modules 371 3.8.2 Primitive modules 373 3.8.3 Semisimple spherical modules 376 3.8.4 Spherical modules at roots of unity 378 3.9 Induced and cospherical 382 3.9.1 Notation 382 3.9.2 When are induced cospherical? 384 3.9.3 Irreducible cospherical modules 387 3.9.4 Irreducibility of induced modules 390 3.10 Gaussian and self duality 392 3.10.1 Gaussians 393 3.10.2 Perfect representations 394 3.10.3 Generic q, singular k ¦ ¦ 399 3.10.4 Roots of unity 403 3.11 DAHA and double polynomials . 407 3.11.1 Good reductions 408 3.11.2 Main theorem 409 3.11.3 Weyl algebra 410 3.11.4 Universal DAHA 413 3.11 5 Universal Durikl operators . • 415 3.11.6 Double polynomials 416 Bibliography 418 Index 431
any_adam_object 1
author Tscherednik, Iwan Wladimirowitsch 1951-
author_GND (DE-588)1104405687
author_facet Tscherednik, Iwan Wladimirowitsch 1951-
author_role aut
author_sort Tscherednik, Iwan Wladimirowitsch 1951-
author_variant i w t iw iwt
building Verbundindex
bvnumber BV019883770
callnumber-first Q - Science
callnumber-label QA176
callnumber-raw QA176
callnumber-search QA176
callnumber-sort QA 3176
callnumber-subject QA - Mathematics
classification_rvk SK 320
classification_tum MAT 430f
MAT 428f
MAT 202f
PHY 012f
ctrlnum (OCoLC)55955646
(DE-599)BVBBV019883770
dewey-full 512/.22
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.22
dewey-search 512/.22
dewey-sort 3512 222
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02386nam a2200637zcb4500</leader><controlfield tag="001">BV019883770</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171124 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">050713s2005 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004054567</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521609186</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-521-60918-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521609180</subfield><subfield code="9">978-0-521-60918-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55955646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019883770</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA176</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.22</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 430f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 428f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 202f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 012f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tscherednik, Iwan Wladimirowitsch</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1104405687</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Double affine Hecke algebras</subfield><subfield code="c">Ivan Cherednik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 434 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">319</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Affiene algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse harmonique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes algébriques affines</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonische analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knizhnik-Zamolodchikov, Équations de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynômes orthogonaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Affine algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knizhnik-Zamoldchikov equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hecke-Algebra</subfield><subfield code="0">(DE-588)4159341-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Affine Algebra</subfield><subfield code="0">(DE-588)4348233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hecke-Algebra</subfield><subfield code="0">(DE-588)4159341-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Affine Algebra</subfield><subfield code="0">(DE-588)4348233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">319</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">319</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=013207873&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013207873</subfield></datafield></record></collection>
id DE-604.BV019883770
illustrated Not Illustrated
indexdate 2025-02-03T16:57:40Z
institution BVB
isbn 0521609186
9780521609180
language English
lccn 2004054567
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013207873
oclc_num 55955646
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-824
DE-11
DE-29T
owner_facet DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-824
DE-11
DE-29T
physical XII, 434 S.
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Cambridge University Press
record_format marc
series London Mathematical Society lecture note series
series2 London Mathematical Society lecture note series
spellingShingle Tscherednik, Iwan Wladimirowitsch 1951-
Double affine Hecke algebras
London Mathematical Society lecture note series
Affiene algebra's gtt
Analyse harmonique
Groupes algébriques affines
Harmonische analyse gtt
Hecke, Algèbres de
Knizhnik-Zamolodchikov, Équations de
Polynômes orthogonaux
Hecke algebras
Affine algebraic groups
Harmonic analysis
Knizhnik-Zamoldchikov equations
Orthogonal polynomials
Hecke-Algebra (DE-588)4159341-8 gnd
Affine Algebra (DE-588)4348233-8 gnd
Harmonische Analyse (DE-588)4023453-8 gnd
subject_GND (DE-588)4159341-8
(DE-588)4348233-8
(DE-588)4023453-8
title Double affine Hecke algebras
title_auth Double affine Hecke algebras
title_exact_search Double affine Hecke algebras
title_full Double affine Hecke algebras Ivan Cherednik
title_fullStr Double affine Hecke algebras Ivan Cherednik
title_full_unstemmed Double affine Hecke algebras Ivan Cherednik
title_short Double affine Hecke algebras
title_sort double affine hecke algebras
topic Affiene algebra's gtt
Analyse harmonique
Groupes algébriques affines
Harmonische analyse gtt
Hecke, Algèbres de
Knizhnik-Zamolodchikov, Équations de
Polynômes orthogonaux
Hecke algebras
Affine algebraic groups
Harmonic analysis
Knizhnik-Zamoldchikov equations
Orthogonal polynomials
Hecke-Algebra (DE-588)4159341-8 gnd
Affine Algebra (DE-588)4348233-8 gnd
Harmonische Analyse (DE-588)4023453-8 gnd
topic_facet Affiene algebra's
Analyse harmonique
Groupes algébriques affines
Harmonische analyse
Hecke, Algèbres de
Knizhnik-Zamolodchikov, Équations de
Polynômes orthogonaux
Hecke algebras
Affine algebraic groups
Harmonic analysis
Knizhnik-Zamoldchikov equations
Orthogonal polynomials
Hecke-Algebra
Affine Algebra
Harmonische Analyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013207873&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000130
work_keys_str_mv AT tscherednikiwanwladimirowitsch doubleaffineheckealgebras