Stable modules and the D(2)-problem

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Johnson, Francis Edward Anthony (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge, UK Cambridge Univ. Pr. 2003
Schriftenreihe:London Mathematical Society lecture note series 301
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV019883406
003 DE-604
005 20050803
007 t|
008 050713s2003 xxk |||| 00||| eng d
010 |a 2003046133 
020 |a 0521537495  |c pbk.  |9 0-521-53749-5 
035 |a (OCoLC)51886466 
035 |a (DE-599)BVBBV019883406 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxk  |c GB 
049 |a DE-91G  |a DE-355  |a DE-11 
050 0 |a QA612.14 
082 0 |a 514/.2  |2 21 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
084 |a SK 280  |0 (DE-625)143228:  |2 rvk 
084 |a MAT 553f  |2 stub 
084 |a MAT 572f  |2 stub 
100 1 |a Johnson, Francis Edward Anthony  |e Verfasser  |4 aut 
245 1 0 |a Stable modules and the D(2)-problem  |c F.E.A. Johnson 
264 1 |a Cambridge, UK  |b Cambridge Univ. Pr.  |c 2003 
300 |a ix, 267 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series  |v 301 
650 7 |a Grupos finitos  |2 larpcal 
650 7 |a Álgebra  |2 larpcal 
650 4 |a Low-dimensional topology 
650 4 |a Homotopy theory 
650 4 |a Group algebras 
650 0 7 |a Gruppenring  |0 (DE-588)4158469-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Homotopietheorie  |0 (DE-588)4128142-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Niederdimensionale Topologie  |0 (DE-588)4280826-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Niederdimensionale Topologie  |0 (DE-588)4280826-1  |D s 
689 0 1 |a Homotopietheorie  |0 (DE-588)4128142-1  |D s 
689 0 2 |a Gruppenring  |0 (DE-588)4158469-7  |D s 
689 0 |5 DE-604 
830 0 |a London Mathematical Society lecture note series  |v 301  |w (DE-604)BV000000130  |9 301 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013207517&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-013207517 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 001z 2001 A 985
DE-BY-TUM_katkey 1515298
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020053854
_version_ 1820796142120599552
adam_text Contents Acknowledgements page x Introduction 1 1 Orders in semisimple algebras 13 1 Simple algebras 13 2 Semisimple modules 17 3 Projective modules and semisimplicity 21 4 The Jacobson radical 23 5 Nondegenerate algebras 26 6 The discriminant 28 7 Z orders 30 8 Examples 33 2 Representation theory of finite groups 38 9 Group representations 38 10 Maschke s Theorem 40 11 Division algebras over Q 42 12 Examples of Wedderburn decompositions 45 3 Stable modules and cancellation theorems 52 13 Schanuel s Lemma 52 14 The structure of stable modules 53 15 The Swan Jacobinski Theorem 56 16 Finitenessof AT0(Z[G]) 59 17 Non cancellation and an example of Swan 60 18 Non cancellation over group rings 64 4 Relative homological algebra 67 19 The derived category of a tame class 68 20 Derived functors 74 21 The long exact sequence in cohomology 78 22 Stable modules and the derived category 83 vii viii Contents 23 Module extensions and Ext1 87 24 General module extensions and Ext 94 25 Classification of general module extensions 98 26 Classification of projective n stems 104 27 The standard cohomology theory of modules 108 5 The derived category of a finite group 114 28 Lattices over a finite group 114 29 The stable modules Qn(Z) 120 30 Stably free extensions 122 31 Subgroup relations in the derived category 125 32 Restriction and transfer 129 6 ^ invariants 132 33 Endomorphisms in the derived category 132 34 fc invariants and the action of Autuer(^) 135 35 Qi(Z)andfi_,(Z) 137 36 Swan modules 139 37 Swan s isomorphism criterion 141 38 Congruence classes and Swan modules 146 39 The Tate ring 148 7 Groups of periodic cohomology 151 40 Periodicity conditions 151 41 Examples 154 42 Subgroup structure at odd primes 156 43 Subgroup structure at the prime 2 159 44 The Artin Tate Theorem 161 45 The Zassenhaus Suzuki classification 164 8 Algebraic homotopy theory 171 46 Chain complexes, homotopy and homology 172 47 Two dimensional complexes 180 48 Cayley complexes 183 49 Algebraicity of two dimensional homotopy 187 9 Stability theorems 193 50 Algebraic stabilization 194 51 Stable isomorphism of stably free extensions 197 52 Eventual stability of homotopy types 200 53 The Swan map 203 54 Module automorphisms and ^ invariants 210 55 Realization Theorems 213 56 Augmentation sequences 216 57 Classification over groups of period 4 220 Contents ix 10 The D(2) problem 224 58 Cohomologically two dimensional 3 complexes 224 59 The virtual 2 complex 227 60 Reduction to two dimensional data 229 61 Group presentations and fi3(Z) 232 62 Verifying the D(2) property 234 11 Poincare 3 complexes 239 63 Attaching 3 cells to a presentation 240 64 Another characterization of groups of period 4 243 65 Poincare 3 complexes of standard form 245 66 Relationship with the D(2) problem 247 67 Terminus: the limits of this book 249 Appendix A The D(2) property for free groups 252 Appendix B The Realization Theorem 256 References 262 Index 266
any_adam_object 1
author Johnson, Francis Edward Anthony
author_facet Johnson, Francis Edward Anthony
author_role aut
author_sort Johnson, Francis Edward Anthony
author_variant f e a j fea feaj
building Verbundindex
bvnumber BV019883406
callnumber-first Q - Science
callnumber-label QA612
callnumber-raw QA612.14
callnumber-search QA612.14
callnumber-sort QA 3612.14
callnumber-subject QA - Mathematics
classification_rvk SK 260
SK 280
classification_tum MAT 553f
MAT 572f
ctrlnum (OCoLC)51886466
(DE-599)BVBBV019883406
dewey-full 514/.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514/.2
dewey-search 514/.2
dewey-sort 3514 12
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01982nam a2200529zcb4500</leader><controlfield tag="001">BV019883406</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050803 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">050713s2003 xxk |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003046133</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521537495</subfield><subfield code="c">pbk.</subfield><subfield code="9">0-521-53749-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51886466</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019883406</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.14</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 553f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 572f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Francis Edward Anthony</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stable modules and the D(2)-problem</subfield><subfield code="c">F.E.A. Johnson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK</subfield><subfield code="b">Cambridge Univ. Pr.</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 267 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">301</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos finitos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-dimensional topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Niederdimensionale Topologie</subfield><subfield code="0">(DE-588)4280826-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Niederdimensionale Topologie</subfield><subfield code="0">(DE-588)4280826-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">301</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">301</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=013207517&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013207517</subfield></datafield></record></collection>
id DE-604.BV019883406
illustrated Not Illustrated
indexdate 2024-12-23T18:18:16Z
institution BVB
isbn 0521537495
language English
lccn 2003046133
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013207517
oclc_num 51886466
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-11
owner_facet DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-11
physical ix, 267 S.
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Cambridge Univ. Pr.
record_format marc
series London Mathematical Society lecture note series
series2 London Mathematical Society lecture note series
spellingShingle Johnson, Francis Edward Anthony
Stable modules and the D(2)-problem
London Mathematical Society lecture note series
Grupos finitos larpcal
Álgebra larpcal
Low-dimensional topology
Homotopy theory
Group algebras
Gruppenring (DE-588)4158469-7 gnd
Homotopietheorie (DE-588)4128142-1 gnd
Niederdimensionale Topologie (DE-588)4280826-1 gnd
subject_GND (DE-588)4158469-7
(DE-588)4128142-1
(DE-588)4280826-1
title Stable modules and the D(2)-problem
title_auth Stable modules and the D(2)-problem
title_exact_search Stable modules and the D(2)-problem
title_full Stable modules and the D(2)-problem F.E.A. Johnson
title_fullStr Stable modules and the D(2)-problem F.E.A. Johnson
title_full_unstemmed Stable modules and the D(2)-problem F.E.A. Johnson
title_short Stable modules and the D(2)-problem
title_sort stable modules and the d 2 problem
topic Grupos finitos larpcal
Álgebra larpcal
Low-dimensional topology
Homotopy theory
Group algebras
Gruppenring (DE-588)4158469-7 gnd
Homotopietheorie (DE-588)4128142-1 gnd
Niederdimensionale Topologie (DE-588)4280826-1 gnd
topic_facet Grupos finitos
Álgebra
Low-dimensional topology
Homotopy theory
Group algebras
Gruppenring
Homotopietheorie
Niederdimensionale Topologie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013207517&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000130
work_keys_str_mv AT johnsonfrancisedwardanthony stablemodulesandthed2problem