An introduction to Lie groups and the geometry of homogeneous spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Arvanitoyeorgos, Andreas 1963- (VerfasserIn)
Format: Buch
Sprache:English
Greek
Veröffentlicht: Providence, Rhode Island American Mathematical Society [2003]
Schriftenreihe:Student mathematical library Volume 22
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV019841064
003 DE-604
005 20230313
007 t|
008 050610s2003 xx |||| 00||| eng d
020 |a 0821827782  |9 0-8218-2778-2 
020 |a 9780821827789  |9 978-0-8218-2778-9 
035 |a (OCoLC)52980839 
035 |a (DE-599)BVBBV019841064 
040 |a DE-604  |b ger  |e rda 
041 1 |a eng  |h gre 
049 |a DE-19  |a DE-20  |a DE-91G  |a DE-91  |a DE-11 
050 0 |a QA387 
082 0 |a 512/.55  |2 22 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a MAT 225f  |2 stub 
084 |a MAT 537f  |2 stub 
100 1 |a Arvanitoyeorgos, Andreas  |d 1963-  |e Verfasser  |0 (DE-588)142306975  |4 aut 
240 1 0 |a Homades Lie, homogeneis choroi kai diaphorike geometria 
245 1 0 |a An introduction to Lie groups and the geometry of homogeneous spaces  |c Andreas Arvanitoyeorgos. Translated from the Greek and revised by the author 
264 1 |a Providence, Rhode Island  |b American Mathematical Society  |c [2003] 
264 4 |c © 2003 
300 |a xvi, 141 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Student mathematical library  |v Volume 22 
650 4 |a Espaces homogènes 
650 7 |a Espaços homogêneos  |2 larpcal 
650 7 |a Geometria diferencial  |2 larpcal 
650 7 |a Grupos de lie  |2 larpcal 
650 4 |a Lie, Groupes de 
650 4 |a Homogeneous spaces 
650 4 |a Lie groups 
650 0 7 |a Lie-Gruppe  |0 (DE-588)4035695-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Homogener Raum  |0 (DE-588)4025787-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Homogener Raum  |0 (DE-588)4025787-3  |D s 
689 0 1 |a Lie-Gruppe  |0 (DE-588)4035695-4  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4704-2136-6 
830 0 |a Student mathematical library  |v Volume 22  |w (DE-604)BV013184751  |9 22 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013165959&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-013165959 

Datensatz im Suchindex

DE-BY-TUM_call_number 0002 MAT 225f 2010 A 661
0202 MAT 225f 2009 A 496
DE-BY-TUM_katkey 1656772
DE-BY-TUM_location 00
02
DE-BY-TUM_media_number 040006977306
040008163226
040020778850
_version_ 1820858218900881408
adam_text Contents Preface ix Introduction xi Chapter 1. Lie Groups 1 1. An example of a Lie group 1 2. Smooth manifolds: A review 2 3. Lie groups 8 4. The tangent space of a Lie group Lie algebras 12 5. One parameter subgroups 15 6. The Campbell Baker Hausdorff formula 20 7. Lie s theorems 21 Chapter 2. Maximal Tori and the Classification Theorem 23 1. Representation theory: elementary concepts 24 2. The adjoint representation 28 3. The Killing form 32 4. Maximal tori 36 5. The classification of compact and connected Lie groups 39 v vi Contents 6. Complex semisimple Lie algebras 41 Chapter 3. The Geometry of a Compact Lie Group 51 1. Riemannian manifolds: A review 51 2. Left invariant and bi invariant metrics 59 3. Geometrical aspects of a compact Lie group 61 Chapter 4. Homogeneous Spaces 65 1. Coset manifolds 65 2. Reductive homogeneous spaces 71 3. The isotropy representation 72 Chapter 5. The Geometry of a Reductive Homogeneous Space 77 1. G invariant metrics 77 2. The Riemannian connection 79 3. Curvature 80 Chapter 6. Symmetric Spaces 87 1. Introduction 87 2. The structure of a symmetric space 88 3. The geometry of a symmetric space 91 4. Duality 92 Chapter 7. Generalized Flag Manifolds 95 1. Introduction 95 2. Generalized flag manifolds as adjoint orbits 96 3. Lie theoretic description of a generalized flag mani¬ fold 98 4. Painted Dynkin diagrams 98 5. T roots and the isotropy representation 100 6. G invariant Riemannian metrics 103 7. G invariant complex structures and Kahler metrics 105 Contents vii 8. G invariant Kahler Einstein metrics 108 9. Generalized flag manifolds as complex manifolds 111 Chapter 8. Advanced topics 113 1. Einstein metrics on homogeneous spaces 113 2. Homogeneous spaces in symplectic geometry 118 3. Homogeneous geodesies in homogeneous spaces 123 Bibliography 129 Index 139
any_adam_object 1
author Arvanitoyeorgos, Andreas 1963-
author_GND (DE-588)142306975
author_facet Arvanitoyeorgos, Andreas 1963-
author_role aut
author_sort Arvanitoyeorgos, Andreas 1963-
author_variant a a aa
building Verbundindex
bvnumber BV019841064
callnumber-first Q - Science
callnumber-label QA387
callnumber-raw QA387
callnumber-search QA387
callnumber-sort QA 3387
callnumber-subject QA - Mathematics
classification_rvk SK 340
SK 370
classification_tum MAT 225f
MAT 537f
ctrlnum (OCoLC)52980839
(DE-599)BVBBV019841064
dewey-full 512/.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.55
dewey-search 512/.55
dewey-sort 3512 255
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02205nam a2200553 cb4500</leader><controlfield tag="001">BV019841064</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230313 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">050610s2003 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821827782</subfield><subfield code="9">0-8218-2778-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821827789</subfield><subfield code="9">978-0-8218-2778-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52980839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019841064</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">gre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 225f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arvanitoyeorgos, Andreas</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142306975</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Homades Lie, homogeneis choroi kai diaphorike geometria</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Lie groups and the geometry of homogeneous spaces</subfield><subfield code="c">Andreas Arvanitoyeorgos. Translated from the Greek and revised by the author</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2003]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 141 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Student mathematical library</subfield><subfield code="v">Volume 22</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces homogènes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Espaços homogêneos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria diferencial</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grupos de lie</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogener Raum</subfield><subfield code="0">(DE-588)4025787-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homogener Raum</subfield><subfield code="0">(DE-588)4025787-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-2136-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Student mathematical library</subfield><subfield code="v">Volume 22</subfield><subfield code="w">(DE-604)BV013184751</subfield><subfield code="9">22</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=013165959&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013165959</subfield></datafield></record></collection>
id DE-604.BV019841064
illustrated Not Illustrated
indexdate 2024-12-23T18:17:11Z
institution BVB
isbn 0821827782
9780821827789
language English
Greek
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013165959
oclc_num 52980839
open_access_boolean
owner DE-19
DE-BY-UBM
DE-20
DE-91G
DE-BY-TUM
DE-91
DE-BY-TUM
DE-11
owner_facet DE-19
DE-BY-UBM
DE-20
DE-91G
DE-BY-TUM
DE-91
DE-BY-TUM
DE-11
physical xvi, 141 Seiten
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher American Mathematical Society
record_format marc
series Student mathematical library
series2 Student mathematical library
spellingShingle Arvanitoyeorgos, Andreas 1963-
An introduction to Lie groups and the geometry of homogeneous spaces
Student mathematical library
Espaces homogènes
Espaços homogêneos larpcal
Geometria diferencial larpcal
Grupos de lie larpcal
Lie, Groupes de
Homogeneous spaces
Lie groups
Lie-Gruppe (DE-588)4035695-4 gnd
Homogener Raum (DE-588)4025787-3 gnd
subject_GND (DE-588)4035695-4
(DE-588)4025787-3
title An introduction to Lie groups and the geometry of homogeneous spaces
title_alt Homades Lie, homogeneis choroi kai diaphorike geometria
title_auth An introduction to Lie groups and the geometry of homogeneous spaces
title_exact_search An introduction to Lie groups and the geometry of homogeneous spaces
title_full An introduction to Lie groups and the geometry of homogeneous spaces Andreas Arvanitoyeorgos. Translated from the Greek and revised by the author
title_fullStr An introduction to Lie groups and the geometry of homogeneous spaces Andreas Arvanitoyeorgos. Translated from the Greek and revised by the author
title_full_unstemmed An introduction to Lie groups and the geometry of homogeneous spaces Andreas Arvanitoyeorgos. Translated from the Greek and revised by the author
title_short An introduction to Lie groups and the geometry of homogeneous spaces
title_sort an introduction to lie groups and the geometry of homogeneous spaces
topic Espaces homogènes
Espaços homogêneos larpcal
Geometria diferencial larpcal
Grupos de lie larpcal
Lie, Groupes de
Homogeneous spaces
Lie groups
Lie-Gruppe (DE-588)4035695-4 gnd
Homogener Raum (DE-588)4025787-3 gnd
topic_facet Espaces homogènes
Espaços homogêneos
Geometria diferencial
Grupos de lie
Lie, Groupes de
Homogeneous spaces
Lie groups
Lie-Gruppe
Homogener Raum
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013165959&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV013184751
work_keys_str_mv AT arvanitoyeorgosandreas homadesliehomogeneischoroikaidiaphorikegeometria
AT arvanitoyeorgosandreas anintroductiontoliegroupsandthegeometryofhomogeneousspaces