Geometric fundamentals of robotics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Selig, J. M. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York Springer 2005
Ausgabe:2. ed.
Schriftenreihe:Monographs in computer science
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV019820981
003 DE-604
005 00000000000000.0
007 t|
008 050524s2005 xxua||| |||| 00||| eng d
010 |a 2004059103 
020 |a 0387208747  |c acidfree paper  |9 0-387-20874-7 
035 |a (OCoLC)56798896 
035 |a (DE-599)BVBBV019820981 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-573  |a DE-11  |a DE-898 
050 0 |a TJ211 
082 0 |a 629.8/92  |2 22 
084 |a ST 308  |0 (DE-625)143655:  |2 rvk 
100 1 |a Selig, J. M.  |e Verfasser  |4 aut 
245 1 0 |a Geometric fundamentals of robotics  |c J.M. Selig 
250 |a 2. ed. 
264 1 |a New York  |b Springer  |c 2005 
300 |a xv, 398 p.  |b ill.  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Monographs in computer science 
500 |a Rev. ed. of: Geometrical methods in robotics. c1996. 
500 |a Includes bibliographical references and index 
650 4 |a Géométrie 
650 4 |a Lie, Groupes de 
650 4 |a Robotique 
650 4 |a Robotics 
650 4 |a Geometry 
650 4 |a Lie groups 
650 0 7 |a Lie-Gruppe  |0 (DE-588)4035695-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Geometrie  |0 (DE-588)4020236-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialgeometrie  |0 (DE-588)4012248-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Robotik  |0 (DE-588)4261462-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Robotik  |0 (DE-588)4261462-4  |D s 
689 0 1 |a Geometrie  |0 (DE-588)4020236-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Robotik  |0 (DE-588)4261462-4  |D s 
689 1 1 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 1 2 |a Differentialgeometrie  |0 (DE-588)4012248-7  |D s 
689 1 3 |a Lie-Gruppe  |0 (DE-588)4035695-4  |D s 
689 1 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013146254&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-013146254 

Datensatz im Suchindex

_version_ 1819786960424665088
adam_text Titel: Geometric fundamentals of robotics Autor: Selig, J. M. Jahr: 2005 Contents Preface vu Introduction 1 1.1 Theoretical Robotics?........................ 1 1.2 Robots and Mechanisms....................... 2 1.3 Algebraic Geometry......................... 4 1.4 Differential Geometry........................ 7 Lie Groups 11 2.1 Definitions and Examples...................... 12 2.2 More Examples — Matrix Groups................. 15 2.2.1 The Orthogonal Group O(n)................ 15 2.2.2 The Special Orthogonal Group SO(n)........... 16 2.2.3 The Symplectic Group Sp(2n, R).............. 17 2.2.4 The Unitary Group U(n) .................. 18 2.2.5 The Special Unitary Group SU(n)............. 18 2.3 Homomorphisms........................... 18 2.4 Actions and Products........................ 21 2.5 The Proper Euclidean Group.................... 23 2.5.1 Isometries........................... 23 2.5.2 Chasles s Theorem...................... 25 2.5.3 Coordinate Frames...................... 27 i Contents Subgroups 31 3.1 The Homomorphism Theorems................... 31 3.2 Quotients and Normal Subgroups.................. 34 3.3 Group Actions Again......................... 36 3.4 Matrix Normal Forms........................ 37 3.5 Subgroups of S E (3) ......................... 41 3.6 Reuleaux s Lower Pairs....................... 44 3.7 Robot Kinematics .......................... 46 Lie Algebra 51 4.1 Tangent Vectors ........................... 51 4.2 The Adjoint Representation..................... 54 4.3 Commutators............................. 57 4.4 The Exponential Mapping...................... 61 4.4.1 The Exponential of Rotation Matrices........... 63 4.4.2 The Exponential in the Standard Representation of SE(3) 66 4.4.3 The Exponential in the Adjoint Representation of S E (3) 68 4.5 Robot Jacobians and Derivatives.................. 71 4.5.1 The Jacobian of a Robot .................. 71 4.5.2 Derivatives in Lie Groups.................. 73 4.5.3 Angular Velocity....................... 75 4.5.4 The Velocity Screw...................... 76 4.6 Subalgebras, Homomorphisms and Ideals.............. 77 4.7 The Killing Form........................... 80 4.8 The Campbell-Baker-Hausdorff Formula.............. 81 A Little Kinematics 85 5.1 Inverse Kinematics for 3-R Wrists..................85 5.2 Inverse Kinematics for 3-R Robots.................89 5.2.1 Solution Procedure......................89 5.2.2 An Example .........................92 5.2.3 Singularities..........................94 5.3 Kinematics of Planar Motion....................98 5.3.1 The Euler-Savaray Equation................101 5.3.2 The Inflection Circle.....................103 5.3.3 Ball s Point..........................104 5.3.4 The Cubic of Stationary Curvature.............105 5.3.5 The Burmester Points....................106 5.4 The Planar 4-Bar...........................108 Line Geometry 113 6.1 Lines in Three Dimensions......................113 6.2 Pliicker Coordinates.........................115 6.3 The Klein Quadric..........................117 6.4 The Action of the Euclidean Group.................119 Contents xiii 6.5 Ruled Surfaces............................123 6.5.1 The Regulus .........................124 6.5.2 The Cylindroid........................126 6.5.3 Curvature Axes........................128 6.6 Line Complexes............................130 6.7 Inverse Robot Jacobians.......................133 6.8 Grassmannians............................135 Representation Theory 139 7.1 Definitions............................... 139 7.2 Combining Representations..................... 142 7.3 Representations of 50(3)...................... 148 7.4 SO(3) Plethyism........................... 151 7.5 Representations of SE(3)...................... 153 7.6 The Principle of Transference.................... 158 Screw Systems 163 8.1 Generalities..............................163 8.2 2-systems...............................167 8.2.1 The Case M2.........................169 8.2.2 The Case 50(2) x K.....................169 8.2.3 The Case 50(3).......................170 8.2.4 The Case Hp « R2......................170 8.2.5 The Case S E (2).......................171 8.2.6 The Case SE{2) xl.....................171 8.2.7 The Case SE(3).......................172 8.3 3-systems...............................175 8.3.1 The Case E3.........................176 8.3.2 The Case 50(3).......................176 8.3.3 The Case S E (2).......................176 8.3.4 The Case Hp k K2......................177 8.3.5 The Case SE{2) xl.....................177 8.3.6 The Case S E (3).......................177 8.4 Identification of Screw Systems...................183 8.4.1 1-systems and 5-systems...................183 8.4.2 2-systems...........................184 8.4.3 4-systems...........................188 8.4.4 3-systems...........................189 8.5 Operations on Screw Systems....................193 Clifford Algebra 197 9.1 Geometric Algebra..........................199 9.2 Clifford Algebra for the Euclidean Group .............206 9.3 Dual Quaternions...........................210 9.4 Geometry of Ruled Surfaces.....................214 xiv Contents 10 A Little More Kinematics 221 10.1 Clifford Algebra of Points, Lines and Planes............221 10.1.1 Planes.............................221 10.1.2 Points.............................222 10.1.3 Lines..............................223 10.2 Euclidean Geometry.........................224 10.2.1 Incidence...........................224 10.2.2 Meets.............................225 10.2.3 Joins—The Shuffle product.................226 10.2.4 Perpendicularity—The Contraction.............228 10.3 Pieper s Theorem...........................231 10.3.1 Robot Kinematics......................231 10.3.2 The T3 Robot ........................234 10.3.3 The PUMA..........................238 11 The Study Quadric 241 11.1 Study s Soma.............................241 11.2 Linear Subspaces...........................245 11.2.1 Lines..............................245 11.2.2 3-planes............................246 11.2.3 Intersections of 3-planes...................248 11.2.4 Quadric Grassmannians...................250 11.3 Partial Flags and Projections....................252 11.4 Some Quadric Subspaces.......................255 11.5 Intersection Theory..........................256 11.5.1 Postures for General 6-R Robots..............262 11.5.2 Conformations of the 6-3 Stewart Platform........264 11.5.3 The Tripod Wrist.......................266 11.5.4 The 6-6 Stewart Platform..................267 12 Statics 271 12.1 Co-Screws...............................271 12.2 Forces, Torques and Wrenches....................272 12.3 Wrist Force Sensor..........................274 12.4 Wrench at the End-Effector.....................276 12.5 Gripping................................278 12.6 Friction................................283 13 Dynamics 287 13.1 Momentum and Inertia........................287 13.2 Robot Equations of Motion.....................292 13.2.1 Equations for a Single Body.................292 13.2.2 Serial Robots.........................293 13.2.3 Change in Payload......................296 13.3 Recursive Formulation........................296 Contents xv 13.4 Lagrangian Dynamics of Robots ..................300 13.4.1 Euler-Lagrange Equations.................. 301 13.4.2 Derivatives of the Generalised Inertia Matrix....... 303 13.4.3 Small Oscillations ...................... 304 13.5 Hamiltonian Dynamics of Robots.................. 306 13.6 Simplification of the Equations of Motion............. 309 13.6.1 Decoupling by Design....................309 13.6.2 Ignorable Coordinates....................312 13.6.3 Decoupling by Coordinate Transformation.........316 14 Constrained Dynamics 321 14.1 Trees and Stars............................321 14.1.1 Dynamics of Tree and Star Structures...........323 14.1.2 Link Velocities and Accelerations..............324 14.1.3 Recursive Dynamics for Trees and Stars..........325 14.2 Serial Robots with End-Effector Constraints............327 14.2.1 Holonomic Constraints....................327 14.2.2 Constrained Dynamics of a Rigid Body..........330 14.2.3 Constrained Serial Robots..................331 14.3 Constrained Trees and Stars.....................333 14.3.1 Systems of Freedom.....................333 14.3.2 Parallel Mechanisms.....................334 14.4 Dynamics of Planar 4-Bars .....................336 14.5 Biped Walking............................340 14.6 The Stewart Platform........................343 15 Differential Geometry 349 15.1 Metrics, Connections and Geodesies ................ 349 15.2 Mobility of Overconstrained Mechanisms.............. 355 15.3 Controlling Robots Along Helical Trajectories........... 360 15.4 Hybrid Control............................ 363 15.4.1 What is Hybrid Control? .................. 363 15.4.2 Constraints.......................... 364 15.4.3 Projection Operators..................... 365 15.4.4 The Second Fundamental Form............... 369 References 373 Index 383
any_adam_object 1
author Selig, J. M.
author_facet Selig, J. M.
author_role aut
author_sort Selig, J. M.
author_variant j m s jm jms
building Verbundindex
bvnumber BV019820981
callnumber-first T - Technology
callnumber-label TJ211
callnumber-raw TJ211
callnumber-search TJ211
callnumber-sort TJ 3211
callnumber-subject TJ - Mechanical Engineering and Machinery
classification_rvk ST 308
ctrlnum (OCoLC)56798896
(DE-599)BVBBV019820981
dewey-full 629.8/92
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 629 - Other branches of engineering
dewey-raw 629.8/92
dewey-search 629.8/92
dewey-sort 3629.8 292
dewey-tens 620 - Engineering and allied operations
discipline Informatik
Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02156nam a2200601zc 4500</leader><controlfield tag="001">BV019820981</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">050524s2005 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004059103</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387208747</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">0-387-20874-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56798896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019820981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ211</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8/92</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 308</subfield><subfield code="0">(DE-625)143655:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Selig, J. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric fundamentals of robotics</subfield><subfield code="c">J.M. Selig</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 398 p.</subfield><subfield code="b">ill.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs in computer science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Rev. ed. of: Geometrical methods in robotics. c1996.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robotics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Robotik</subfield><subfield code="0">(DE-588)4261462-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=013146254&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013146254</subfield></datafield></record></collection>
id DE-604.BV019820981
illustrated Illustrated
indexdate 2024-12-23T18:16:41Z
institution BVB
isbn 0387208747
language English
lccn 2004059103
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013146254
oclc_num 56798896
open_access_boolean
owner DE-573
DE-11
DE-898
DE-BY-UBR
owner_facet DE-573
DE-11
DE-898
DE-BY-UBR
physical xv, 398 p. ill. 24 cm
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Springer
record_format marc
series2 Monographs in computer science
spellingShingle Selig, J. M.
Geometric fundamentals of robotics
Géométrie
Lie, Groupes de
Robotique
Robotics
Geometry
Lie groups
Lie-Gruppe (DE-588)4035695-4 gnd
Geometrie (DE-588)4020236-7 gnd
Differentialgeometrie (DE-588)4012248-7 gnd
Robotik (DE-588)4261462-4 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
subject_GND (DE-588)4035695-4
(DE-588)4020236-7
(DE-588)4012248-7
(DE-588)4261462-4
(DE-588)4001161-6
title Geometric fundamentals of robotics
title_auth Geometric fundamentals of robotics
title_exact_search Geometric fundamentals of robotics
title_full Geometric fundamentals of robotics J.M. Selig
title_fullStr Geometric fundamentals of robotics J.M. Selig
title_full_unstemmed Geometric fundamentals of robotics J.M. Selig
title_short Geometric fundamentals of robotics
title_sort geometric fundamentals of robotics
topic Géométrie
Lie, Groupes de
Robotique
Robotics
Geometry
Lie groups
Lie-Gruppe (DE-588)4035695-4 gnd
Geometrie (DE-588)4020236-7 gnd
Differentialgeometrie (DE-588)4012248-7 gnd
Robotik (DE-588)4261462-4 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
topic_facet Géométrie
Lie, Groupes de
Robotique
Robotics
Geometry
Lie groups
Lie-Gruppe
Geometrie
Differentialgeometrie
Robotik
Algebraische Geometrie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013146254&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT seligjm geometricfundamentalsofrobotics