Lie theory unitary representations and compactifications of symmetric spaces

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Birkhäuser 2005
Schriftenreihe:Progress in mathematics 229
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV019764609
003 DE-604
005 20050609
007 t|
008 050408s2005 xxud||| |||| 00||| eng d
010 |a 2004045091 
020 |a 0817635262  |c acidfree paper  |9 0-8176-3526-2 
035 |a (OCoLC)54529201 
035 |a (DE-599)BVBBV019764609 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-824  |a DE-29T  |a DE-188 
050 0 |a QA649 
082 0 |a 516.3/62  |2 22 
082 0 |a 516.362 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
245 1 0 |a Lie theory  |b unitary representations and compactifications of symmetric spaces  |c Jean-Philippe Anker... ed. 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 2005 
300 |a X, 207 S.  |b graph. Darst.  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in mathematics  |v 229 
650 4 |a Espaces symétriques 
650 7 |a Espaços simétricos (geometria diferencial)  |2 larpcal 
650 4 |a Lie, Groupes de 
650 7 |a Lie-groepen  |2 gtt 
650 7 |a Symmetrische ruimten  |2 gtt 
650 4 |a Symmetric spaces 
650 4 |a Lie theory 
650 0 7 |a Lie-Algebra  |0 (DE-588)4130355-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Symmetrischer Raum  |0 (DE-588)4184206-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Darstellungstheorie  |0 (DE-588)4148816-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Lie-Theorie  |0 (DE-588)4251836-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Symmetrischer Raum  |0 (DE-588)4184206-6  |D s 
689 0 1 |a Lie-Theorie  |0 (DE-588)4251836-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Lie-Algebra  |0 (DE-588)4130355-6  |D s 
689 1 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Anker, Jean-Philippe  |e Sonstige  |4 oth 
830 0 |a Progress in mathematics  |v 229  |w (DE-604)BV000004120  |9 229 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-013090884 

Datensatz im Suchindex

_version_ 1819255796087652357
any_adam_object
building Verbundindex
bvnumber BV019764609
callnumber-first Q - Science
callnumber-label QA649
callnumber-raw QA649
callnumber-search QA649
callnumber-sort QA 3649
callnumber-subject QA - Mathematics
classification_rvk SK 340
ctrlnum (OCoLC)54529201
(DE-599)BVBBV019764609
dewey-full 516.3/62
516.362
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.3/62
516.362
dewey-search 516.3/62
516.362
dewey-sort 3516.3 262
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02130nam a2200589zcb4500</leader><controlfield tag="001">BV019764609</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20050609 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">050408s2005 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004045091</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817635262</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">0-8176-3526-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54529201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019764609</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.362</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie theory</subfield><subfield code="b">unitary representations and compactifications of symmetric spaces</subfield><subfield code="c">Jean-Philippe Anker... ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 207 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">229</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces symétriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Espaços simétricos (geometria diferencial)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetrische ruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anker, Jean-Philippe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">229</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">229</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013090884</subfield></datafield></record></collection>
genre 1\p (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV019764609
illustrated Illustrated
indexdate 2024-12-23T18:12:07Z
institution BVB
isbn 0817635262
language English
lccn 2004045091
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013090884
oclc_num 54529201
open_access_boolean
owner DE-824
DE-29T
DE-188
owner_facet DE-824
DE-29T
DE-188
physical X, 207 S. graph. Darst. 24 cm
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Birkhäuser
record_format marc
series Progress in mathematics
series2 Progress in mathematics
spelling Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed.
Boston [u.a.] Birkhäuser 2005
X, 207 S. graph. Darst. 24 cm
txt rdacontent
n rdamedia
nc rdacarrier
Progress in mathematics 229
Espaces symétriques
Espaços simétricos (geometria diferencial) larpcal
Lie, Groupes de
Lie-groepen gtt
Symmetrische ruimten gtt
Symmetric spaces
Lie theory
Lie-Algebra (DE-588)4130355-6 gnd rswk-swf
Symmetrischer Raum (DE-588)4184206-6 gnd rswk-swf
Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf
Lie-Theorie (DE-588)4251836-2 gnd rswk-swf
1\p (DE-588)4151278-9 Einführung gnd-content
Symmetrischer Raum (DE-588)4184206-6 s
Lie-Theorie (DE-588)4251836-2 s
DE-604
Lie-Algebra (DE-588)4130355-6 s
Darstellungstheorie (DE-588)4148816-7 s
2\p DE-604
Anker, Jean-Philippe Sonstige oth
Progress in mathematics 229 (DE-604)BV000004120 229
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Lie theory unitary representations and compactifications of symmetric spaces
Progress in mathematics
Espaces symétriques
Espaços simétricos (geometria diferencial) larpcal
Lie, Groupes de
Lie-groepen gtt
Symmetrische ruimten gtt
Symmetric spaces
Lie theory
Lie-Algebra (DE-588)4130355-6 gnd
Symmetrischer Raum (DE-588)4184206-6 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
Lie-Theorie (DE-588)4251836-2 gnd
subject_GND (DE-588)4130355-6
(DE-588)4184206-6
(DE-588)4148816-7
(DE-588)4251836-2
(DE-588)4151278-9
title Lie theory unitary representations and compactifications of symmetric spaces
title_auth Lie theory unitary representations and compactifications of symmetric spaces
title_exact_search Lie theory unitary representations and compactifications of symmetric spaces
title_full Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed.
title_fullStr Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed.
title_full_unstemmed Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed.
title_short Lie theory
title_sort lie theory unitary representations and compactifications of symmetric spaces
title_sub unitary representations and compactifications of symmetric spaces
topic Espaces symétriques
Espaços simétricos (geometria diferencial) larpcal
Lie, Groupes de
Lie-groepen gtt
Symmetrische ruimten gtt
Symmetric spaces
Lie theory
Lie-Algebra (DE-588)4130355-6 gnd
Symmetrischer Raum (DE-588)4184206-6 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
Lie-Theorie (DE-588)4251836-2 gnd
topic_facet Espaces symétriques
Espaços simétricos (geometria diferencial)
Lie, Groupes de
Lie-groepen
Symmetrische ruimten
Symmetric spaces
Lie theory
Lie-Algebra
Symmetrischer Raum
Darstellungstheorie
Lie-Theorie
Einführung
volume_link (DE-604)BV000004120
work_keys_str_mv AT ankerjeanphilippe lietheoryunitaryrepresentationsandcompactificationsofsymmetricspaces