From vectors to tensors

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruíz-Tolosa, Juan Ramón (VerfasserIn), Castillo, Enrique 1946- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Heidelberg Springer 2005
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV019702378
003 DE-604
005 20230120
007 t
008 050218s2005 gw |||| |||| 00||| eng d
015 |a 04,N34,0460  |2 dnb 
016 7 |a 971870446  |2 DE-101 
020 |a 354022887X  |c Pb. : EUR 64.15 (freier Pr.), ca. sfr 106.00 (freier Pr.)  |9 3-540-22887-X 
024 3 |a 9783540228875 
028 5 2 |a 11312567 
035 |a (OCoLC)57333271 
035 |a (DE-599)BVBBV019702378 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-703  |a DE-91  |a DE-824  |a DE-384  |a DE-526  |a DE-634  |a DE-20  |a DE-11  |a DE-188  |a DE-83 
050 0 |a QA433 
082 0 |a 515/.63  |2 22 
084 |a SK 220  |0 (DE-625)143224:  |2 rvk 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
084 |a 510  |2 sdnb 
084 |a 15A60  |2 msc 
084 |a MAT 157f  |2 stub 
084 |a 15A72  |2 msc 
100 1 |a Ruíz-Tolosa, Juan Ramón  |0 (DE-588)129615714  |4 aut 
245 1 0 |a From vectors to tensors  |c Juan Ramón Ruíz-Tolosa ; Enrique Castillo 
264 1 |a Berlin ; Heidelberg  |b Springer  |c 2005 
300 |a XVI, 670 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Universitext 
500 |a Auch als Internetausgabe 
650 4 |a Algèbre tensorielle 
650 4 |a Algèbre vectorielle 
650 4 |a Analyse vectorielle 
650 4 |a Calcul tensoriel 
650 4 |a Calculus of tensors  |v Textbooks 
650 4 |a Tensor algebra  |v Textbooks 
650 4 |a Vector algebra  |v Textbooks 
650 0 7 |a Tensoralgebra  |0 (DE-588)4505278-5  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Tensoralgebra  |0 (DE-588)4505278-5  |D s 
689 0 |5 DE-604 
700 1 |a Castillo, Enrique  |d 1946-  |0 (DE-588)124179266  |4 aut 
856 4 2 |m Digitalisierung UB Augsburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013029913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-013029913 

Datensatz im Suchindex

DE-BY-TUM_call_number 0005/MAT 157 2005 A 1186
DE-BY-TUM_katkey 1496058
DE-BY-TUM_media_number 040005539031
_version_ 1816712461056737280
adam_text Contents Part I Basic Tensor Algebra Tensor Spaces .............................................. 3 1.1 Introduction ............................................ 3 1.2 Dual or reciprocal coordinate frames in affine Euclidean spaces 3 1.3 Different types of matrix products ........................ 8 1.3.1 Definitions ...................................... 8 1.3.2 Properties concerning general matrices ............. 10 1.3.3 Properties concerning square matrices .............. 11 1.3.4 Properties concerning eigenvalues and eigenvectors ... 12 1.3.5 Properties concerning the Schur product ............ 13 1.3.6 Extension and condensation of matrices ............ 13 1.3.7 Some important matrix equations .................. 17 1.4 Special tensors ......................................... 26 1.5 Exercises .............................................. 30 Introduction to Tensors ..................................... 33 2.1 Introduction ........................................... 33 2.2 The triple tensor product linear space . .................... 33 2.3 Einstein s summation convention ......................... 36 2.4 Tensor analytical representation .......................... 37 2.5 Tensor product axiomatic properties ...................... 38 2.6 Generalization .......................................... 40 2.7 Illustrative examples .................................... 41 2.8 Exercises .............................................. 46 Homogeneous Tensors ...................................... 47 3.1 Introduction ........................................... 47 3.2 The concept of homogeneous tensors ...................... 47 3.3 General rules about tensor notation ....................... 48 3.4 The tensor product of tensors ............................ 50 X Contents 3.5 Einstein s contraction of the tensor product ............... 54 3.6 Matrix representation of tensors .......................... 56 3.6.1 First-order tensors ............................... 56 3.6.2 Second-order tensors ............................. 57 3.7 Exercises .............................................. 61 4 Change-of-basis in Tensor Spaces ........................... 65 4.1 Introduction ........................................... 65 4.2 Change of basis in a third-order tensor product space ....... 65 4.3 Matrix representation of a change-of-basis in tensor spaces ... 67 4.4 General criteria for tensor character ....................... 69 4.5 Extension to homogeneous tensors ........................ 72 4.6 Matrix operation rules for tensor expressions ............... 74 4.6.1 Second-order tensors (matrices) ................... 74 4.6.2 Third-order tensors .............................. 77 4.6.3 Fourth-order tensors ............................. 78 4.7 Change-of-basis invariant tensors: Isotropie tensors .......... 80 4.8 Main isotropie tensors ................................... 80 4.8.1 The null tensor .................................. 80 4.8.2 Zero-order tensor (scalar invariant) ................ 80 4.8.3 Kronecker s delta ................................ 80 4.9 Exercises .............................................. 106 5 Homogeneous Tensor Algebra: Tensor Homomorphisms ..... Ill 5.1 Introduction ........................................... Ill 5.2 Л4аіп theorem on tensor contraction ....................... Ill 5.3 The contracted tensor product and tensor homomorphisms ... 113 5.4 Tensor product applications ..............................119 5.4.1 Common simply contracted tensor products .........119 5.4.2 Multiply contracted tensor products ...............120 5.4.3 Scalar and inner tensor products ...................120 5.5 Criteria for tensor character based on contraction ...........122 5.6 The contracted tensor product in the reverse sense: The quotient law ...........................................124 5.7 Matrix representation of permutation homomorphisms .......127 5.7.1 Permutation matrix tensor product types in Kn .....127 5.7.2 Linear span of precedent types ....................129 5.7.3 The isomers of a tensor ...........................137 5.8 Matrices associated with simply contraction homomorphisms . 141 5.8.1 Mixed tensors of second order (r = 2): Matrices ......141 5.8.2 , Mixed tensors of third order (r = 3)................141 5.8.3 Mixed tensors of fourth order (r = 4) ..............142 5.8.4 Mixed tensors of fifth order (r = 5) ................143 5.9 Matrices associated with doubly contracted homomorphisms . 144 5.9.1 Mixed tensors of fourth order (r — 4) ..............144 Contents XI 5.9.2 Mixed tensors of fifth order (r = 5) ................145 5.10 Eigentensors...........................................159 5.11 Generalized multilinear mappings .........................165 5.11.1 Theorems of similitude with tensor mappings .......167 5.11.2 Tensor mapping types ............................168 5.11.3 Direct n-dimensional tensor endomorphisms .........169 5.12 Exercises ..............................................183 Part II Special Tensors 6 Symmetric Homogeneous Tensors: Tensor Algebras .........189 6.1 Introduction ...........................................189 6.2 Symmetric systems of scalar components ..................189 6.2.1 Symmetric systems with respect to an index subset . . 190 6.2.2 Symmetric systems. Total symmetry ...............190 6.3 Strict components of a symmetric system ..................191 6.3.1 Number of strict components of a symmetric system with respect to an index subset ....................191 6.3.2 Number of strict components of a symmetric system . 192 6.4 Tensors with symmetries: Tensors with branched symmetry, symmetric tensors ......................................193 6.4.1 Generation of symmetric tensors ...................194 6.4.2 Intrinsic character of tensor S3rmmetry: Fundamental theorem of tensors with symmetry .................197 6.4.3 Symmetric tensor spaces and subspaces. Strict components associated with subspaces ..............204 6.5 Symmetric tensors under the tensor algebra, perspective .....206 6.5.1 Symmetrized tensor associated with an arbitrary pure tensor .....................................210 6.5.2 Extension of the symmetrized tensor associated with a mixed tensor ..................................210 6.6 Symmetric tensor algebras: The &s product ................212 6.7 Illustrative examples ....................................214 6.8 Exercises ..............................................220 7 Anti-symmetric Homogeneous Tensors, Tensor and Inner Product Algebras ............................................225 7.1 Introduction ...........................................225 7.2 Anti-symmetric systems of scalar components ..............225 7.2.1 Anti-symmetric systems with respect to an index subset ..........................................226 7.2.2 Anti-symmetric systems. Total anti-symmetry .......228 7.3 Strict components of an anti-symmetric system and with respect to an index subset ...............................228 XII Contents 7.3.1 Number of strict components of an anti-symmetric system with respect to an index subset .............229 7.3.2 Number of strict components of an anti-symmetric system ......................................... 229 .7.4 Tensors with anti-symmetries: Tensors with branched anti-symmetry; anti-symmetric tensors ....................230 7.4.1 Generation of anti-symmetric tensors ...............232 7.4.2 Intrinsic character of tensor anti-symmetry: Fundamental theorem of tensors with anti-symmetry . 236 7.4.3 Anti-symmetric tensor spaces and subspaces. Vector subspaces associated with strict components ........243 7.5 Anti-symmetric tensors from the tensor algebra perspective . . 246 7.5.1 Anti-symmetrized tensor associated with an arbitrary pure tensor ............................. 249 7.5.2 Extension of the anti-symmetrized tensor concept associated with a mixed tensor ....................249 7.6 Anti-symmetric tensor algebras: The ®я product ...........252 7.7 Illustrative examples ....................................253 7.8 Exercises ..............................................265 8 Pseudotenşors; Modular, Relative or Weighted Tensors .....269 8.1 Introduction ...........................................269 8.2 Previous concepts of modular tensor establishment ..........269 8.2.1 Relative modulus of a change-of-basis ..............269 8.2.2 Oriented vector space ............................270 8.2.3 Weight tensor ...................................270 8.3 Axiomatic properties for the modular tensor concept ........270 8.4 Modular tensor characteristics ............................271 8.4.1 Equality of modular tensors .......................272 8.4.2 Classification and special denominations ............272 8.5 Remarks on modular tensor operations: Consequences .......272 8.5.1 Tensor addition ..................................272 8.5.2 Multiplication by a scalar .........................274 8.5.3 Tensor product ..................................275 8.5.4 · Tensor contraction ...............................276 8.5.5 Contracted tensor products .......................276 8.5.6 The quotient law. New criteria for modular tensor character .......................................277 8.6 Modular symmetry and anti-symmetry ....................280 8.7 Main modular tensors ...................................291 8.7.1 e systems, permutation systems or Levi-Civita • tensor systems ..................................291 8.7.2 Generalized Kronecker deltas: Definition ............293 8.7.3 Dual or polar tensors: Definition ...................301 8.8 Exercises ..............................................310 Part III Exterior Algebras 9 Exterior Algebras: Totally Anti-symmetric Homogeneous Tensor Algebras .....315 9.1 Introduction and Definitions .............................315 9.1.1 Exterior product of two vectors ....................315 9.1.2 Exterior product of three vectors ..................317 9.1.3* Strict components of exterior vectors. M ulti vectors . . . 318 9.2 Exterior product of r vectors: Decomposable multivectors .... 319 9.2.1 Properties of exterior products of order r: Decomposable multivectors or exterior vectors .......321 9.2.2 Exterior algebras over Vn(K) spaces: Terminology . . . 323 9.2.3 Exterior algebras of order r=0 and r=l .............324 9.3 Axiomatic properties of tensor operations in exterior algebras 324 9.3.1 Addition and multiplication by an scalar ...........324 9.3.2 Generalized exterior tensor product: Exterior product of exterior vectors ........................325 9.3.3 Anti-commutativity of the exterior product Д ...... . 331 9.4 Dual exterior algebras over V^(K) spaces ..................331 9.4.1 Exterior product of r linear forms over V™(K) .......332 9.4.2 Axiomatic tensor operations in dual exterior Algebras / n¿{K)- Dual exterior tensor product .....333 9.4.3 Observation about bases of primary and dual exterior spaces ........,.........................334 9.5 The change-of-basis in exterior algebras ....................337 9.5.1 Strict tensor relationships for / £ (K) algebras ......338 9.5.2 Strict tensor relationships for f „}(R) algebras ......339 9.6 Complements of contramodular and comodular scalars ......341 9.7 Comparative tables of algebra correspondences .............342 9.8 Scalar mappings: Exterior contractions ....................342 9.9 Exterior vector mappings: Exterior homornorphisms .........345 9.9.1 Direct exterior endomorphism .....................350 9.10 Exercises ..............................................383 10 Mixed Exterior Algebras ...................................387 10.1 Introduction ...........................................387 10.1.1 Mixed anti-symmetric tensor spaces and their strict tensor components ...............................387 10.1.2 Mixed exterior product of four vectors ..............390 10.2 Decomposable mixed exterior vectors ......................394 10.3 Mixed exterior algebras: Terminology ......................397 10.3.1 Exterior basis of a mixed exterior algebra ...........397 10.3.2 Axiomatic tensor operations in the f ^ {K) algebra 398 XIV Contents 10.4 Exterior product of mixed exterior vectors .................399 10.5 Anti-commutativity of the Д mixed exterior product ........403 10.6 Change of basis in mixed exterior algebras .................404 10.7 Exercises ..............................................409 Part IV Tensors over Linear Spaces with Inner Product 11 Euclidean Homogeneous Tensors ............................413 11.1 Introduction ...........................................413 11.2 Initial concepts .........................................413 11.3 Tensor character of the inner vector s connection in a PSEń(U.) space ........................................416 11.4 Different types of the fundamental connection tensor ........418 11.5 Tensor product of vectors in Еп(П) (or in PSEn{U)) .......421 11.6 Equivalent associated tensors: Vertical displacements of indices. Generalization ..................................422 11.6.1 The quotient space of isomers .....................426 11.7 Changing bases in Еп(Л): Euclidean tensor character criteria 427 11.8 Symmetry and anti-symmetry in Euclidean tensors ..........430 11.9 Cartesian tensors .......................................433 11.9.1 Main properties of Euclidean En{H) spaces in orthonormal bases ...............................433 11.9.2 Tensor total Euclidean character in orthonormal bases ........................................434 11.9.3. Tensor partial Euclidean character in orthonormal bases ...........................................436 11.9.4 Rectangular Cartesian tensors .....................436 11.10 Euclidean and pseudo-Euclidean tensor algebra .............451 11.10.1 Euclidean tensor equality .........................451 11.10.2 Addition and external product of Euclidean (pseudo-Euclidean) tensors ........................451 11.10.3 Tensor product of Euclidean (pseudo-Euclidean) tensors ......................................... 452 11.10.4 Euclidean (pseudo-Euclidean) tensor contraction .....452 11.10.5 Contracted tensor product of Euclidean or pseudo-Euclidean tensors .........................455 11.10.6 Euclidean contraction of tensors of order r = 2......457 11.10.7 Euclidean contraction of tensors of order r = 3......457 11.10.8 Euclidean contraction of tensors of order r = 4......457 11.10.9 Euclidean contraction of indices by the Hadamard product ........................................458 11.11 Euclidean tensor metrics .................................482 11.11.1 Inner connection .................................483 11.11.2 The induced fundamental metric tensor ............484 Contents XV 11.11.3 Reciprocai and orthonormal basis ..................486 11.12 Exercises ..............................................504 12 Modular Tensors over En(lR) Euclidean Spaces .............511 12.1 Introduction ...........................................511 12.2 Diverse cases of linear space connections ...................511 12.3 Tensor character of γ /jÔj ................................ 512 12.4 The orientation tensor: Definition .........................514 12.5 Tensor character of the orientation tensor ..................514 12.6 Orientation tensors as associated Euclidean tensors .........515 12.7 Dual or polar tensors over En(lR) Euclidean spaces .........516 12.8 Exercises ..............................................525 13 Euclidean Exterior Algebra .................................529 13.1 Introduction ...........................................529 13.2 Euclidean exterior algebra of order τ — 1 ..................529 13.3 Euclidean exterior algebra of order r (2 < г < n) ............532 13.4 Euclidean exterior algebra of order r—n .................... 535 13:5 The orientation tensor in exterior bases ....................535 13.6 Dual or polar tensors in exterior bases .....................536 13.7 The cross product as a polar tensor in generalized Cartesian coordinate frames .......................................538 13.8 АЩ geometric interpretation in generalized Cartesian coordinate frames .......................................539 13.9 Illustrative examples ....................................540 13.10 Exercises ..............................................576 Part V Classic Tensors in Geometry and Mechanics 14 Affine Tensors ..............................................581 14.1 Introduction and Motivation .............................581 14.2 Euclidean tensors in En(R) ..............................582 14.2.1 Projection tensor ................................582 14.2.2 The momentum tensor ...........................586 14.2.3 The rotation tensor ..............................587 14.2.4 The reflection tensor .............................590 14.3 Affine geometric tensors. Homographies ....................597 14.3.1 Preamble .......................................597 14.3.2 Definition and representation ......................599 14.3.3 Affinities .......................................600 14.3.4- Homothecies ___................................604 14.3.5 Isometries ......................................606 14.3.6 Product of isometries ............................623 14.4 Tensors in Physics and Mechanics .........................626 XVI Contents 14.4.1 The stress tensor 5..............................628 14.4.2 The strain tensor Γ .............................. 630 14.4.3 Tensor relationships between S and Γ. Elastic tensor. 635 14.4.4 The inerţial moment tensor .......................647 14.5 Exercises ..............................................655 Bibliography ...................................................659 Index ..........................................................663
any_adam_object 1
author Ruíz-Tolosa, Juan Ramón
Castillo, Enrique 1946-
author_GND (DE-588)129615714
(DE-588)124179266
author_facet Ruíz-Tolosa, Juan Ramón
Castillo, Enrique 1946-
author_role aut
aut
author_sort Ruíz-Tolosa, Juan Ramón
author_variant j r r t jrr jrrt
e c ec
building Verbundindex
bvnumber BV019702378
callnumber-first Q - Science
callnumber-label QA433
callnumber-raw QA433
callnumber-search QA433
callnumber-sort QA 3433
callnumber-subject QA - Mathematics
classification_rvk SK 220
SK 350
classification_tum MAT 157f
ctrlnum (OCoLC)57333271
(DE-599)BVBBV019702378
dewey-full 515/.63
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.63
dewey-search 515/.63
dewey-sort 3515 263
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02132nam a2200589 c 4500</leader><controlfield tag="001">BV019702378</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">050218s2005 gw |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N34,0460</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">971870446</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354022887X</subfield><subfield code="c">Pb. : EUR 64.15 (freier Pr.), ca. sfr 106.00 (freier Pr.)</subfield><subfield code="9">3-540-22887-X</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540228875</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11312567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57333271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019702378</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA433</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.63</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 157f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A72</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruíz-Tolosa, Juan Ramón</subfield><subfield code="0">(DE-588)129615714</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From vectors to tensors</subfield><subfield code="c">Juan Ramón Ruíz-Tolosa ; Enrique Castillo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 670 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre tensorielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre vectorielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse vectorielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcul tensoriel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of tensors</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor algebra</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector algebra</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensoralgebra</subfield><subfield code="0">(DE-588)4505278-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tensoralgebra</subfield><subfield code="0">(DE-588)4505278-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castillo, Enrique</subfield><subfield code="d">1946-</subfield><subfield code="0">(DE-588)124179266</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=013029913&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-013029913</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV019702378
illustrated Not Illustrated
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 354022887X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-013029913
oclc_num 57333271
open_access_boolean
owner DE-703
DE-91
DE-BY-TUM
DE-824
DE-384
DE-526
DE-634
DE-20
DE-11
DE-188
DE-83
owner_facet DE-703
DE-91
DE-BY-TUM
DE-824
DE-384
DE-526
DE-634
DE-20
DE-11
DE-188
DE-83
physical XVI, 670 Seiten Diagramme
publishDate 2005
publishDateSearch 2005
publishDateSort 2005
publisher Springer
record_format marc
series2 Universitext
spellingShingle Ruíz-Tolosa, Juan Ramón
Castillo, Enrique 1946-
From vectors to tensors
Algèbre tensorielle
Algèbre vectorielle
Analyse vectorielle
Calcul tensoriel
Calculus of tensors Textbooks
Tensor algebra Textbooks
Vector algebra Textbooks
Tensoralgebra (DE-588)4505278-5 gnd
subject_GND (DE-588)4505278-5
(DE-588)4123623-3
title From vectors to tensors
title_auth From vectors to tensors
title_exact_search From vectors to tensors
title_full From vectors to tensors Juan Ramón Ruíz-Tolosa ; Enrique Castillo
title_fullStr From vectors to tensors Juan Ramón Ruíz-Tolosa ; Enrique Castillo
title_full_unstemmed From vectors to tensors Juan Ramón Ruíz-Tolosa ; Enrique Castillo
title_short From vectors to tensors
title_sort from vectors to tensors
topic Algèbre tensorielle
Algèbre vectorielle
Analyse vectorielle
Calcul tensoriel
Calculus of tensors Textbooks
Tensor algebra Textbooks
Vector algebra Textbooks
Tensoralgebra (DE-588)4505278-5 gnd
topic_facet Algèbre tensorielle
Algèbre vectorielle
Analyse vectorielle
Calcul tensoriel
Calculus of tensors Textbooks
Tensor algebra Textbooks
Vector algebra Textbooks
Tensoralgebra
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=013029913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT ruiztolosajuanramon fromvectorstotensors
AT castilloenrique fromvectorstotensors