Lectures on automorphic L-functions

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cogdell, James W. 1953- (VerfasserIn), Kim, Henry H. 1964- (VerfasserIn), Murty, Maruti Ram 1953- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, R.I. American Mathematical Society 2004
Schriftenreihe:Fields Institute monographs 20
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV019353905
003 DE-604
005 20240820
007 t|
008 040803s2004 xxu |||| 00||| eng d
010 |a 2004046166 
020 |a 0821835165  |c alk. paper  |9 0-8218-3516-5 
035 |a (OCoLC)54685474 
035 |a (DE-599)BVBBV019353905 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-355  |a DE-20  |a DE-83  |a DE-11 
050 0 |a QA246 
082 0 |a 512.7/3  |2 22 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 750  |0 (DE-625)143254:  |2 rvk 
084 |a 11F70  |2 msc 
084 |a 22E55  |2 msc 
100 1 |a Cogdell, James W.  |d 1953-  |e Verfasser  |0 (DE-588)130465259  |4 aut 
245 1 0 |a Lectures on automorphic L-functions  |c James M. Cogdell, Henry H. Kim, M. Ram Murty 
264 1 |a Providence, R.I.  |b American Mathematical Society  |c 2004 
300 |a XII, 283 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Fields Institute monographs  |v 20 
500 |a Includes bibliographical references 
650 4 |a Fonctions L 
650 4 |a Fonctions automorphes 
650 4 |a Automorphic functions 
650 4 |a L-functions 
650 0 7 |a L-Funktion  |0 (DE-588)4137026-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Automorphe Funktion  |0 (DE-588)4143706-8  |2 gnd  |9 rswk-swf 
689 0 0 |a L-Funktion  |0 (DE-588)4137026-0  |D s 
689 0 1 |a Automorphe Funktion  |0 (DE-588)4143706-8  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Kim, Henry H.  |d 1964-  |e Verfasser  |0 (DE-588)17371983X  |4 aut 
700 1 |a Murty, Maruti Ram  |d 1953-  |e Verfasser  |0 (DE-588)120837307  |4 aut 
830 0 |a Fields Institute monographs  |v 20  |w (DE-604)BV009737926  |9 20 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012817885&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-012817885 

Datensatz im Suchindex

_version_ 1819770721395539968
adam_text Contents Preface xi Lectures on // functions, Converse Theorems, and Functionality for GL(n) James W. Cogdell Preface 3 Lecture 1. Modular Forms and Their // functions 5 1. Examples 6 2. Growth estimates on cusp forms 7 3. The L function of a cusp form 8 4. The Euler product 10 5. References 12 Lecture 2. Automorphic Forms 13 1. Automorphic forms on GL2 13 2. Automorphic forms on GLn 16 3. Smooth automorphic forms 17 4. L2 automorphic forms 18 5. Cusp forms 18 6. References 19 Lecture 3. Automorphic Representations 21 1. (/sT fmite) automorphic representations 21 2. Smooth automorphic representations 24 3. L2 automorphic representations 25 4. Cuspidal representations 25 5. Connections with classical forms 26 6. References 27 Lecture 4. Fourier Expansions and Multiplicity One Theorems 29 1. The Fourier expansion of a cusp form 29 2. Whittaker models 31 3. Multiplicity one for GLn 33 4. Strong multiplicity ones for GLn 34 5. References 35 V vi Contents Lecture 5. Eulerian Integral Representations 37 1. GL2 x GLX 37 2. GLn x GLm with m n 38 3. GLn x GLn 41 4. Summary 43 5. References 43 Lecture 6. Local L functions: The Non Archimedean Case 45 1. Whittaker functions 45 2. The local L function (m n) 46 3. The local functional equation 48 4. The conductor of tt 49 5. Multiplicativity and stability of 7 factors 49 6. References 50 Lecture 7. The Unramified Calculation 51 1. Unramified representations 52 2. Unramified Whittaker functions 53 3. Calculating the integral 55 4. References 57 Lecture 8. Local L functions: The Archimedean Case 59 1. The arithmetic Langlands classification 59 2. The L functions 59 3. The integrals (m n) 61 4. Is the L factor correct? 62 5. References 64 Lecture 9. Global L functions 65 1. Convergence 65 2. Meromorphic continuation 66 3. Poles of L functions 67 4. The global functional equation 67 5. Boundedness in vertical strips 68 6. Summary 69 7. Strong Multiplicity One revisited 69 8. Generalized Strong Multiplicity One 70 9. References 70 Lecture 10. Converse Theorems 73 1. Converse Theorems for GLn 73 2. Inverting the integral representation 74 3. Proof of Theorem 10.1 (i) 77 4. Proof of Theorem 10.1 (ii) 77 5. Theorem 10.2 and beyond 78 6. A useful variant 79 7. Conjectures 79 Contents vjj 8. References 80 Lecture 11. Functoriality 81 1. The Weil Deligne group 81 2. The dual group 82 3. The local Langlands conjecture 82 4. Local functoriality 83 5. Global functoriality 83 6. Functoriality and the Converse Theorem 84 7. References 85 Lecture 12. Functoriality for the Classical Groups 87 1. The results 87 2. Construction of a candidate lift 88 3. Analytic properties of L functions 90 4. Apply the Converse Theorem 90 5. References 90 Lecture 13. Functoriality for the Classical Groups, II 91 1. Functoriality 91 2. Descent 92 3. Bounds towards Ramanujan 94 4. The local converse theorem 94 5. Further applications 95 6. References 96 Automorphic L functions Henry H. Kim Introduction 99 Chapter 1. Chevalley Groups and their Properties 101 1. Algebraic groups 101 2. Roots and coroots 103 3. Classification of root systems 104 4. Construction of Chevalley groups: simply connected type 107 5. Structure of parabolic subgroups 108 Chapter 2. Cuspidal Representations 113 Chapter 3. L groups and Automorphic L functions 115 Chapter 4. Induced Representations 119 1. Harish Chandra homomorphisms 119 2. Induced representations: F local 121 3. Intertwining operators for I(s, it) 122 4. Digression on admissible representations 123 5. Induced representations: F global 126 viii Contents 6. Induced representations as holomorphic fiber bundles 126 Chapter 5. Eisenstein Series and Constant Terms 129 1. Definition of Eisenstein series 129 2. Constant terms 130 3. Psuedo Eisenstein series 132 Chapter 6. L functions in the Constant Terms 137 List of L functions via Langlands Shahidi method 143 Chapter 7. Meromorphic Continuation of L functions 145 Chapter 8. Generic Representations and their Whittaker Models 147 1. General case 147 2. Whittaker models for induced representations 149 Chapter 9. Local Coefficients and Non constant Terms 153 1. Non constant terms of Eisenstein series 153 2. Local coefficients and crude functional equation 158 Chapter 10. Local Langlands Correspondence 161 Chapter 11. Local L functions and Functional Equations 165 1. Definition of local L functions 169 2. Properties of local L functions; supercuspidal representations 170 Chapter 12. Normalization of Intertwining Operators 171 1. 7T is supercuspidal 171 2. it is tempered, generic 171 3. it is non tempered, generic 172 4. Application to reducibility criterion 175 Chapter 13. Holomorphy and Bounded in Vertical Strips 177 1. Holomorphy of L functions 177 2. Boundedness in vertical strips of L functions 177 Chapter 14. Langlands Functoriality Conjecture 181 Chapter 15. Converse Theorem of Cogdell and Piatetski Shapiro 183 Chapter 16. Functoriality of the Symmetric Cube 187 1. Weak Ramanujan property 187 2. Functoriality of the symmetric square 187 3. Functoriality of the tensor product of GL2 x GL3 188 4. Functoriality of the symmetric cube 190 Chapter 17. Functoriality of the Symmetric Fourth 193 1. Functoriality of the exterior square 193 Contents IX 2. Functoriality of the symmetric fourth 194 Bibliography !99 Applications of Symmetric Power L functions M. Ram Murty Preface 205 Lecture 1. The Sato Tate Conjecture 207 1. Introduction 207 2. Uniform distribution 208 3. Wiener Ikehara Tauberian theorem 209 4. Weyl s theorem for compact groups 210 Lecture 2. Maass Wave Forms 213 1. Maass forms of weight zero 213 2. Maass forms with weight 214 3. Eisenstein series 214 4. Upper bound for Fourier coefficients and eigenvalue estimators 216 Lecture 3. The Rankin Selberg Method 219 1. Eisenstein series and non vanishing of £(s) on 9 (s) = 1 219 2. Explicit construction of Maass cusp forms 221 3. The Rankin Selberg L function 222 4. Rankin Selberg L functions for GLn 225 Lecture 4. Oscillations of Fourier Coefficients of Cusp Forms 227 1. Preliminaries 227 2. Rankin s theorem 228 3. A review of symmetric power L functions 230 4. Proof of Theorem 4.1 232 Lecture 5. Poincare Series 237 1. Poincare series for SL2(Z) 237 2. Fourier coefficients and Kloosterman sums 239 3. The Kloosterman Selberg zeta function 242 Lecture 6. Kloosterman Sums and Selberg s Conjecture 243 1. Petersson s formula 243 2. Selberg s theorem 244 3. The Selberg Linnik conjecture 245 Lecture 7. Refined Estimates for Fourier Coefficients of Cusp Forms 247 1. Sieve theory and Kloosterman sums 247 2. Gauss sums and hyper Kloosterman sum 248 3. The Duke Iwaniec method 248 x Contents Lecture 8. Twisting and Averaging of L series 253 1. Selberg conjectures for GLn 253 2. Ramanujan conjecture for Gln 254 3. The method of averaging L functions 255 Lecture 9. The Kim Sarnak Theorem 257 1. Preliminaries 257 2. Rankin Selberg theory 258 3. An application of the Duke Iwaniec method 259 Lecture 10. Introduction to Artin L functions 265 1. Hecke L functions 265 2. Artin L functions 266 3. Automorphic induction and Artin s conjecture 268 Lecture 11. Zeros and Poles of Artin L functions 271 1. The Heilbronn character 271 2. The fundamental inequality 272 3. Rankin Selberg property for Galois representations 273 Lecture 12. The Langlands Tunnell Theorem 275 1. Review of some group theory 275 2. Some representation theory 276 3. An application of the Deligne Serre theory 277 4. The general case 277 5. Sarnak s theorem 278 Bibliography 281
any_adam_object 1
author Cogdell, James W. 1953-
Kim, Henry H. 1964-
Murty, Maruti Ram 1953-
author_GND (DE-588)130465259
(DE-588)17371983X
(DE-588)120837307
author_facet Cogdell, James W. 1953-
Kim, Henry H. 1964-
Murty, Maruti Ram 1953-
author_role aut
aut
aut
author_sort Cogdell, James W. 1953-
author_variant j w c jw jwc
h h k hh hhk
m r m mr mrm
building Verbundindex
bvnumber BV019353905
callnumber-first Q - Science
callnumber-label QA246
callnumber-raw QA246
callnumber-search QA246
callnumber-sort QA 3246
callnumber-subject QA - Mathematics
classification_rvk SK 180
SK 750
ctrlnum (OCoLC)54685474
(DE-599)BVBBV019353905
dewey-full 512.7/3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7/3
dewey-search 512.7/3
dewey-sort 3512.7 13
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02016nam a2200529zcb4500</leader><controlfield tag="001">BV019353905</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240820 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">040803s2004 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004046166</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821835165</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8218-3516-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54685474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV019353905</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA246</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11F70</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22E55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cogdell, James W.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130465259</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on automorphic L-functions</subfield><subfield code="c">James M. Cogdell, Henry H. Kim, M. Ram Murty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 283 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fields Institute monographs</subfield><subfield code="v">20</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions L</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions automorphes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">L-functions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Automorphe Funktion</subfield><subfield code="0">(DE-588)4143706-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Henry H.</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)17371983X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murty, Maruti Ram</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120837307</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fields Institute monographs</subfield><subfield code="v">20</subfield><subfield code="w">(DE-604)BV009737926</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=012817885&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-012817885</subfield></datafield></record></collection>
id DE-604.BV019353905
illustrated Not Illustrated
indexdate 2024-12-23T17:42:31Z
institution BVB
isbn 0821835165
language English
lccn 2004046166
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-012817885
oclc_num 54685474
open_access_boolean
owner DE-355
DE-BY-UBR
DE-20
DE-83
DE-11
owner_facet DE-355
DE-BY-UBR
DE-20
DE-83
DE-11
physical XII, 283 Seiten
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher American Mathematical Society
record_format marc
series Fields Institute monographs
series2 Fields Institute monographs
spellingShingle Cogdell, James W. 1953-
Kim, Henry H. 1964-
Murty, Maruti Ram 1953-
Lectures on automorphic L-functions
Fields Institute monographs
Fonctions L
Fonctions automorphes
Automorphic functions
L-functions
L-Funktion (DE-588)4137026-0 gnd
Automorphe Funktion (DE-588)4143706-8 gnd
subject_GND (DE-588)4137026-0
(DE-588)4143706-8
title Lectures on automorphic L-functions
title_auth Lectures on automorphic L-functions
title_exact_search Lectures on automorphic L-functions
title_full Lectures on automorphic L-functions James M. Cogdell, Henry H. Kim, M. Ram Murty
title_fullStr Lectures on automorphic L-functions James M. Cogdell, Henry H. Kim, M. Ram Murty
title_full_unstemmed Lectures on automorphic L-functions James M. Cogdell, Henry H. Kim, M. Ram Murty
title_short Lectures on automorphic L-functions
title_sort lectures on automorphic l functions
topic Fonctions L
Fonctions automorphes
Automorphic functions
L-functions
L-Funktion (DE-588)4137026-0 gnd
Automorphe Funktion (DE-588)4143706-8 gnd
topic_facet Fonctions L
Fonctions automorphes
Automorphic functions
L-functions
L-Funktion
Automorphe Funktion
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=012817885&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009737926
work_keys_str_mv AT cogdelljamesw lecturesonautomorphiclfunctions
AT kimhenryh lecturesonautomorphiclfunctions
AT murtymarutiram lecturesonautomorphiclfunctions