Path integrals in field theory an introduction

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mosel, Ulrich 1943- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2004
Schriftenreihe:Advanced texts in physics
Physics and astronomy online library
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV017491693
003 DE-604
005 20040819
007 t|
008 030909s2004 gw d||| |||| 00||| eng d
016 7 |a 968667929  |2 DE-101 
020 |a 3540403825  |9 3-540-40382-5 
035 |a (OCoLC)52381474 
035 |a (DE-599)BVBBV017491693 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-20  |a DE-91G  |a DE-355  |a DE-384  |a DE-634  |a DE-11  |a DE-19 
050 0 |a QC174.52.P37 
082 0 |a 530.14/3  |2 21 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a UK 4500  |0 (DE-625)145802:  |2 rvk 
084 |a PHY 023f  |2 stub 
084 |a PHY 013f  |2 stub 
100 1 |a Mosel, Ulrich  |d 1943-  |e Verfasser  |0 (DE-588)106321412  |4 aut 
245 1 0 |a Path integrals in field theory  |b an introduction  |c Ulrich Mosel 
264 1 |a Berlin [u.a.]  |b Springer  |c 2004 
300 |a XII, 213 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Advanced texts in physics 
490 0 |a Physics and astronomy online library 
650 4 |a Champs, Théorie quantique des 
650 4 |a Intégrales de parcours 
650 7 |a Kwantumveldentheorie  |2 gtt 
650 7 |a Natuurkunde  |2 gtt 
650 7 |a Pad-integralen  |2 gtt 
650 4 |a Physik 
650 4 |a Path integrals 
650 4 |a Quantum field theory 
650 0 7 |a Pfadintegral  |0 (DE-588)4173973-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |D s 
689 0 1 |a Pfadintegral  |0 (DE-588)4173973-5  |D s 
689 0 |5 DE-604 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010537604&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-010537604 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 PHY 023f 2004 A 1004
DE-BY-TUM_katkey 1474934
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020742676
_version_ 1820890777087115264
adam_text ULRICH MOSEL PATH INTEGRALS IN FIELD THEORY AN INTRODUCTION WITH 19 FIGURES SPRINGER CONTENTS PART I NON-RELATIVISTIC QUANTUM THEORY THE PATH INTEGRAL IN QUANTUM THEORY 3 1.1 PROPAGATOR OF THE SCHRODINGER EQUATION 3 1.2 PROPAGATOR AS PATH INTEGRAL 5 1.3 QUADRATIC HAMILTONIANS 9 1.3.1 CARTESIAN METRIC 9 1.3.2 NON-CARTESIAN METRIC 11 1.4 CLASSICAL INTERPRETATION 13 PERTURBATION THEORY 15 2.1 FREE PROPAGATOR 15 2.2 PERTURBATIVE EXPANSION 17 2.3 APPLICATION TO SCATTERING 22 GENERATING FUNCTIONALS 27 3.1 GROUNDSTATE-TO-GROUNDSTATE TRANSITIONS 27 3.1.1 GENERATING FUNCTIONAL 31 3.2 FUNCTIONAL DERIVATIVES OF GS-GS TRANSITION AMPLITUDES 32 PART II RELATIVISTIC QUANTUM FIELD THEORY RELATIVISTIC FIELDS 39 4.1 EQUATIONS OF MOTION 39 4.1.1 EXAMPLES 41 4.2 SYMMETRIES AND CONSERVATION LAWS 46 4.2.1 GEOMETRICAL SPACE*TIME SYMMETRIES 47 4.2.2 INTERNAL SYMMETRIES 49 PATH INTEGRALS FOR SCALAR FIELDS 53 5.1 GENERATING FUNCTIONAL FOR FIELDS 53 5.1.1 EUCLIDEAN REPRESENTATION 56 X CONTENTS 6 EVALUATION OF PATH INTEGRALS 59 6.1 FREE SCALAR FIELDS 59 6.1.1 GENERATING FUNCTIONAL 59 6.1.2 FEYNMAN PROPAGATOR 61 6.1.3 GAUSSIAN INTEGRATION 64 6.2 INTERACTING SCALAR FIELDS 67 6.2.1 STATIONARY PHASE APPROXIMATION 67 6.2.2 NUMERICAL EVALUATION OF PATH INTEGRALS 70 6.2.3 REAL TIME FORMALISM 72 7 TRANSITION RATES AND GREEN S FUNCTIONS 75 7.1 SCATTERING MATRIX 75 7.2 REDUCTION THEOREM 77 7.2.1 CANONICAL FIELD QUANTIZATION 77 7.2.2 DERIVATION OF THE REDUCTION THEOREM 78 8 GREEN S FUNCTIONS 85 8.1 N-POINT GREEN S FUNCTIONS 85 8.1.1 MOMENTUM REPRESENTATION 86 8.1.2 OPERATOR REPRESENTATIONS 86 8.2 FREE SCALAR FIELDS 89 8.2.1 WICK S THEOREM 89 8.2.2 FEYNMAN RULES 91 8.3 INTERACTING SCALAR FIELDS 92 8.3.1 PERTURBATIVE EXPANSION 93 9 PERTURBATIVE 4 4 THEORY 97 9.1 PERTURBATIVE EXPANSION OF THE GENERATING FUNCTION 97 9.1.1 GENERATING FUNCTIONAL UP TO O{G) 98 9.2 TWO-POINT FUNCTION 101 9.2.1 TERMS UP TO O{G) 101 9.2.2 TERMS UP TO O{G) 102 9.2.3 TERMS UP TO O{G 2 ) 104 9.3 FOUR-POINT FUNCTION 106 9.3.1 TERMS UP TO O(G) 106 9.3.2 TERMS UP TO O(G 2 ) 107 9.4 DIVERGENCES IN N-POINT FUNCTIONS 110 9.4.1 POWER COUNTING 110 9.4.2 DIMENSIONAL REGULARIZATION OF / 4 THEORY 113 9.4.3 RENORMALIZATION 119 CONTENTS XI 10 GREEN S FUNCTIONS FOR FERMIONS 125 10.1 GRASSMANN ALGEBRA 125 10.1.1 DERIVATIVES 126 10.1.2 INTEGRATION 128 10.2 GREEN S FUNCTIONS FOR FERMIONS 134 10.2.1 GENERATING FUNCTIONAL FOR FERMIONS 134 10.2.2 REDUCTION THEOREM FOR FERMIONS 138 10.2.3 GREEN S FUNCTIONS 139 11 INTERACTING FIELDS 141 11.1 FEYNMAN RULES 141 11.1.1 FERMION LOOPS 143 11.2 WICK S THEOREM 145 11.3 BOSONIZATION OF YUKAWA THEORY 147 11.3.1 PERTURBATIVE EXPANSION 150 PART III GAUGE FIELD THEORY 12 PATH INTEGRALS FOR QED 157 12.1 GAUGE INVARIANCE IN ABELIAN FREE FIELD THEORIES 157 12.2 GENERATING FUNCTIONAL 161 12.3 GAUGE INVARIANCE IN QED 162 12.4 FEYNMAN RULES OF QED 164 13 PATH INTEGRALS FOR GAUGE FIELDS 167 13.1 NON-ABELIAN GAUGE FIELDS 167 13.2 GENERATING FUNCTIONAL 171 13.3 GAUGE FIXING OF 176 13.4 FADDEEV-POPOV DETERMINANT 178 13.4.1 EXPLICIT FORMS OF THE FP DETERMINANT 180 13.4.2 GHOST FIELDS 182 13.5 FEYNMAN RULES 184 14 EXAMPLES FOR GAUGE FIELD THEORIES 189 14.1 QUANTUM CHROMODYNAMICS 189 14.2 ELECTROWEAK INTERACTIONS 190 UNITS AND METRIC 193 A.I UNITS 193 A.2 METRIC AND NOTATION 194 XII CONTENTS FUNCTIONALS 197 B.I DEFINITION 197 B.2 FUNCTIONAL INTEGRATION 197 B.2.1 GAUSSIAN INTEGRALS 198 B.3 FUNCTIONAL DERIVATIVES 201 RENORMALIZATION INTEGRALS 203 GAUSSIAN GRASSMANN INTEGRATION 207 REFERENCES 209 INDEX 211
any_adam_object 1
author Mosel, Ulrich 1943-
author_GND (DE-588)106321412
author_facet Mosel, Ulrich 1943-
author_role aut
author_sort Mosel, Ulrich 1943-
author_variant u m um
building Verbundindex
bvnumber BV017491693
callnumber-first Q - Science
callnumber-label QC174
callnumber-raw QC174.52.P37
callnumber-search QC174.52.P37
callnumber-sort QC 3174.52 P37
callnumber-subject QC - Physics
classification_rvk SK 950
UK 4500
classification_tum PHY 023f
PHY 013f
ctrlnum (OCoLC)52381474
(DE-599)BVBBV017491693
dewey-full 530.14/3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.14/3
dewey-search 530.14/3
dewey-sort 3530.14 13
dewey-tens 530 - Physics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01958nam a2200541 c 4500</leader><controlfield tag="001">BV017491693</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040819 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030909s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968667929</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540403825</subfield><subfield code="9">3-540-40382-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52381474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017491693</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.52.P37</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4500</subfield><subfield code="0">(DE-625)145802:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mosel, Ulrich</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106321412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Path integrals in field theory</subfield><subfield code="b">an introduction</subfield><subfield code="c">Ulrich Mosel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 213 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced texts in physics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics and astronomy online library</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Champs, Théorie quantique des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intégrales de parcours</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kwantumveldentheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Natuurkunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pad-integralen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=010537604&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010537604</subfield></datafield></record></collection>
id DE-604.BV017491693
illustrated Illustrated
indexdate 2024-12-23T16:22:18Z
institution BVB
isbn 3540403825
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-010537604
oclc_num 52381474
open_access_boolean
owner DE-20
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-384
DE-634
DE-11
DE-19
DE-BY-UBM
owner_facet DE-20
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-384
DE-634
DE-11
DE-19
DE-BY-UBM
physical XII, 213 S. graph. Darst.
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Springer
record_format marc
series2 Advanced texts in physics
Physics and astronomy online library
spellingShingle Mosel, Ulrich 1943-
Path integrals in field theory an introduction
Champs, Théorie quantique des
Intégrales de parcours
Kwantumveldentheorie gtt
Natuurkunde gtt
Pad-integralen gtt
Physik
Path integrals
Quantum field theory
Pfadintegral (DE-588)4173973-5 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
subject_GND (DE-588)4173973-5
(DE-588)4047984-5
title Path integrals in field theory an introduction
title_auth Path integrals in field theory an introduction
title_exact_search Path integrals in field theory an introduction
title_full Path integrals in field theory an introduction Ulrich Mosel
title_fullStr Path integrals in field theory an introduction Ulrich Mosel
title_full_unstemmed Path integrals in field theory an introduction Ulrich Mosel
title_short Path integrals in field theory
title_sort path integrals in field theory an introduction
title_sub an introduction
topic Champs, Théorie quantique des
Intégrales de parcours
Kwantumveldentheorie gtt
Natuurkunde gtt
Pad-integralen gtt
Physik
Path integrals
Quantum field theory
Pfadintegral (DE-588)4173973-5 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
topic_facet Champs, Théorie quantique des
Intégrales de parcours
Kwantumveldentheorie
Natuurkunde
Pad-integralen
Physik
Path integrals
Quantum field theory
Pfadintegral
Quantenfeldtheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010537604&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT moselulrich pathintegralsinfieldtheoryanintroduction