Parametric continuation and optimal parametrization in applied mathematics and mechanics
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English Russian |
Veröffentlicht: |
Dordrecht [u.a.]
Kluwer Acad. Publ.
2003
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV017428579 | ||
003 | DE-604 | ||
005 | 20060609 | ||
007 | t| | ||
008 | 030819s2003 ne d||| |||| 00||| eng d | ||
010 | |a 2003058891 | ||
020 | |a 1402015429 |c alk. paper |9 1-4020-1542-9 | ||
035 | |a (OCoLC)845603326 | ||
035 | |a (DE-599)BVBBV017428579 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 1 | |a eng |h rus | |
044 | |a ne |c NL | ||
049 | |a DE-703 |a DE-11 | ||
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Šalašilin, Vladimir I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parametric continuation and optimal parametrization in applied mathematics and mechanics |c by V. I. Shalashilin and E. B. Kuznetsov |
264 | 1 | |a Dordrecht [u.a.] |b Kluwer Acad. Publ. |c 2003 | |
300 | |a VIII, 228 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fortsetzungsmethode |0 (DE-588)4246522-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Fortsetzungsmethode |0 (DE-588)4246522-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kuznetsov, E. B. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010501605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010501605 |
Datensatz im Suchindex
_version_ | 1819697156876926976 |
---|---|
adam_text | PARAMETRIC CONTINUATION AND OPTIMAL PARAMETRIZATION IN APPLIED
MATHEMATICS AND MECHANICS BY V.I. SHALASHILIN MOSCOW AVIATION INSTITUTE,
MOSCOW, RUSSIA AND E.B. KUZNETSOV MOSCOW AVIATION INSTITUTE, MOSCOW,
RUSSIA KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON CONTENTS
PREFACE VII 1. NONLINEAR EQUATIONS WITH A PARAMETER 1 1. TWO FORMS OF
THE METHOD OF CONTINUATION OF THE SOLUTION WITH RESPECT TO A PARAMETER 1
2. THE PROBLEM OF CHOOSING THE CONTINUATION PARAMETER. REPLACEMENT OF
THE PARAMETER 8 3. THE BEST CONTINUATION PARAMETER 11 4. THE ALGORITHMS
USING THE BEST CONTINUATION PARAMETER AND EXAMPLES OF THEIR APPLICATION
24 5. GEOMETRICAL VISUALIZATION OF STEP - BY - STEP PROCESSES. 32 6. THE
SOLUTION CONTINUATION IN VICINITY OF ESSENTIAL SINGULARITY POINTS 40 2.
THE CAUCHY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS 43 1. THE CAUCHY
PROBLEM AS A PROBLEM OF SOLUTION CONTINUATION WITH RESPECT TO A
PARAMETER 43 2. CERTAIN PROPERTIES OF A - TRANSFORMATION 46 3.
ALGORITHMS, SOFTWARES, EXAMPLES 59 3. STIFF SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS 67 1. CHARACTERISTIC FEATURES OF NUMERICAL
INTEGRATION OF STIFF SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS 67 2.
SINGULAR PERTURBED EQUATIONS 77 3. STIFF SYSTEMS 86 4. STIFF EQUATIONS
FOR PARTIAL DERIVATIVES 94 VI OPTIMAL PARAMETRIZATION 4. DIFFERENTIAL
ALGEBRAIC EQUATIONS 97 1. CLASSIFICATION OF SYSTEMS OF DAE 97 2. THE
BEST ARGUMENT FOR A SYSTEM OF DIFFERENTIAL - ALGEBRAIC EQUATIONS 102 3.
EXPLICIT DIFFERENTIAL - ALGEBRAIC EQUATIONS 106 4. IMPLICIT ORDINARY
DIFFERENTIAL EQUATIONS 110 5. IMPLICIT DIFFERENTIAL - ALGEBRAIC
EQUATIONS 118 5. FUNCTIONAL - DIFFERENTIAL EQUATIONS 137 1. THE CAUCHY
PROBLEM FOR EQUATIONS WITH RETARDED ARGUMENT 137 2. THE CAUCHY PROBLEM
FOR VOLTERRA S INTEGRO - DIFFERENTIAL EQUATIONS 143 6. THE PARAMETRIC
APPROXIMATION 1. THE PARAMETRIC INTERPOLATION 2. THE PARAMETRIC
APPROXIMATION 3. THE CONTINUOUS APPROXIMATION 7. NONLINEAR BOUNDARY
VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS 1. THE EQUATIONS OF
SOLUTION CONTINUATION FOR NONLINEAR ONE- DIMENSIONAL BOUNDARY VALUE
PROBLEMS 2. THE DISCRETE ORTHOGONAL SHOOTING METHOD 3. THE ALGORITHMS
FOR CONTINUOUS AND DISCRETE CONTINUATION OF THE SOLUTION WITH RESPECT TO
A PARAMETER FOR NONLINEAR ONE - DIMENSIONAL BOUNDARY VALUE PROBLEMS 4.
THE EXAMPLE: LARGE DEFLECTIONS OF THE CIRCLE ARCH 8. CONTINUATION OF THE
SOLUTION NEAR SINGULAR POINTS 1. CLASSIFICATION OF SINGULAR POINTS 2.
THE SIMPLEST FORM OF BIFURCATION EQUATIONS 3. THE SIMPLEST CASE OF
BRANCHING (RANK(J)=N-L) 4. THE CASE OF BRANCHING WHEN RANK( J)=N-2
REFERENCES BIBLIOGRAPHY
|
any_adam_object | 1 |
author | Šalašilin, Vladimir I. Kuznetsov, E. B. |
author_facet | Šalašilin, Vladimir I. Kuznetsov, E. B. |
author_role | aut aut |
author_sort | Šalašilin, Vladimir I. |
author_variant | v i š vi viš e b k eb ebk |
building | Verbundindex |
bvnumber | BV017428579 |
classification_rvk | SK 500 SK 520 |
ctrlnum | (OCoLC)845603326 (DE-599)BVBBV017428579 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01649nam a2200397zc 4500</leader><controlfield tag="001">BV017428579</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060609 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030819s2003 ne d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003058891</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402015429</subfield><subfield code="c">alk. paper</subfield><subfield code="9">1-4020-1542-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845603326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017428579</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Šalašilin, Vladimir I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parametric continuation and optimal parametrization in applied mathematics and mechanics</subfield><subfield code="c">by V. I. Shalashilin and E. B. Kuznetsov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 228 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fortsetzungsmethode</subfield><subfield code="0">(DE-588)4246522-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fortsetzungsmethode</subfield><subfield code="0">(DE-588)4246522-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuznetsov, E. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010501605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010501605</subfield></datafield></record></collection> |
id | DE-604.BV017428579 |
illustrated | Illustrated |
indexdate | 2024-12-23T16:21:20Z |
institution | BVB |
isbn | 1402015429 |
language | English Russian |
lccn | 2003058891 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010501605 |
oclc_num | 845603326 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | VIII, 228 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Kluwer Acad. Publ. |
record_format | marc |
spellingShingle | Šalašilin, Vladimir I. Kuznetsov, E. B. Parametric continuation and optimal parametrization in applied mathematics and mechanics Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Fortsetzungsmethode (DE-588)4246522-9 gnd |
subject_GND | (DE-588)4020929-5 (DE-588)4246522-9 |
title | Parametric continuation and optimal parametrization in applied mathematics and mechanics |
title_auth | Parametric continuation and optimal parametrization in applied mathematics and mechanics |
title_exact_search | Parametric continuation and optimal parametrization in applied mathematics and mechanics |
title_full | Parametric continuation and optimal parametrization in applied mathematics and mechanics by V. I. Shalashilin and E. B. Kuznetsov |
title_fullStr | Parametric continuation and optimal parametrization in applied mathematics and mechanics by V. I. Shalashilin and E. B. Kuznetsov |
title_full_unstemmed | Parametric continuation and optimal parametrization in applied mathematics and mechanics by V. I. Shalashilin and E. B. Kuznetsov |
title_short | Parametric continuation and optimal parametrization in applied mathematics and mechanics |
title_sort | parametric continuation and optimal parametrization in applied mathematics and mechanics |
topic | Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Fortsetzungsmethode (DE-588)4246522-9 gnd |
topic_facet | Gewöhnliche Differentialgleichung Fortsetzungsmethode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010501605&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT salasilinvladimiri parametriccontinuationandoptimalparametrizationinappliedmathematicsandmechanics AT kuznetsoveb parametriccontinuationandoptimalparametrizationinappliedmathematicsandmechanics |