Applied mathematical modelling of engineering problems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hritonenko, Natali (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Norwell, Mass. [u.a.] Kluwer Acad. Publ. 2003
Schriftenreihe:Applied optimization 81
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV017154136
003 DE-604
005 20060613
007 t|
008 030520s2003 xxua||| |||| 00||| eng d
010 |a 2003051641 
020 |a 1402074840  |9 1-4020-7484-0 
035 |a (OCoLC)52208363 
035 |a (DE-599)BVBBV017154136 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-703  |a DE-20  |a DE-634 
050 0 |a TA342 
082 0 |a 620/.001/5118  |2 21 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
100 1 |a Hritonenko, Natali  |e Verfasser  |4 aut 
245 1 0 |a Applied mathematical modelling of engineering problems  |c by Natali Hritonenko ; Yuri Yatsenko 
264 1 |a Norwell, Mass. [u.a.]  |b Kluwer Acad. Publ.  |c 2003 
300 |a XXI, 286 S.  |b Ill. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Applied optimization  |v 81 
500 |a Includes bibliographical references (p. 261-276) and index 
650 4 |a Ingenieurwissenschaften 
650 4 |a Mathematisches Modell 
650 4 |a Engineering  |x Mathematical models 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Angewandte Mathematik  |0 (DE-588)4142443-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Angewandte Mathematik  |0 (DE-588)4142443-8  |D s 
689 0 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 0 |5 DE-604 
700 1 |a Jatsenko, Jurij  |e Sonstige  |4 oth 
830 0 |a Applied optimization  |v 81  |w (DE-604)BV010841718  |9 81 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010341207&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-010341207 

Datensatz im Suchindex

_version_ 1819605453215105024
adam_text Contents PREFACE xi ACKNOWLEDGEMENTS xxi CHAPTER 1. SOME BASIC MODELS OF PHYSICAL SYSTEMS 1 1. BASIC MODELS OF PARTICLE DYNAMICS 2 1.1 Motion of a Particle in Gravitational Field 3 1.1.1 Vertical Projectile Problem. 4 1.1.2 Free Fall with Air Resistance 4 1.1.3 Plane Projectile Problem 5 1.1.4 More General Ballistic Problems 6 1.2 One Dimensional Mechanical Vibrations 6 1.2.1 Linear Oscillator 7 1.2.2 Forced Linear Vibrations and Resonance. 9 1.2.3 Nonlinear Oscillators 11 1.2.4 Nonlinear Vibrations and Resonance. 14 1.2.5 Nonlinear Electrical Mechanical Systems 16 2. INVERSE PROBLEMS AND INTEGRAL MODELS 19 2.1 Sliding Particle and Abel s Equation 20 2.2 Sliding Chain 22 2.3 Models of Computerized Tomography 24 2.3.1 Radon Transform 2 5 2.3.2 Inverse Scattering Problems 28 vi Applied Mathematical Modelling of Engineering Problems CHAPTER 2. MODELS OF CONTINUUM MECHANICAL SYSTEMS 29 1. CONSERVATION LAWS IN ONE DIMENSIONAL MEDIUM 30 1.1 Eulerian and Lagrangian Coordinates 31 1.2 Mass Conservation 32 1.3 Momentum Conservation 33 1.4 Energy Conservation and Thermodynamics 36 2. MODELS OF ONE DIMENSIONAL CONTINUUM DYNAMICS 39 2.1 Nonlinear Model of Solid Bar Dynamics 40 2.2 Linearized Model of Solid Bar Dynamics 41 2.3 Discontinuities in Linear Models 44 2.3.1 Analysis of Discontinuity Propagation 45 2.3.2 Analysis of Size of Discontinuity 47 2.3.3 Discontinuities Fixed in Space 49 2.4 Discontinuities in Nonlinear Models 50 2.4.1 Nonlinear Conservation Laws. 51 2.4.2 Impact of Diffusion and Dispersion. 53 2.5 Models of Viscoelasticity 54 3. THREE DIMENSIONAL CONSERVATION LAWS AND MODELS 56 3.1 Mass Conservation and Continuity Equations 57 3.2 Momentum Conservation and Cauchy Equations 58 3.2.1 Conservation of Angular Momentum 59 3.2.2 Newtonian Viscous Fluids 60 3.2.3 Inviscid Fluids 61 3.2.4 Propagation of Sound in Space 62 3.2.5 Elastic Waves in Solids 63 3.3 Energy Balance and Thermodynamics 65 3.4 Heat Balance and Diffusion Processes 66 3.4.1 Diffusion Equation 68 3.4.2 Advection Diffusion Equation 69 4. APPLIED MODELLING OF WATER TRANSPORT AND CONTAMINATION 70 4.1 Description of Physical Processes. 71 4.2 Classification of Models 72 4.3 Three Dimensional Model 74 Contents vii 4.3.1 Equation of Transport of the Ingredient in Solute 75 4.3.2 Equation of Transport of Suspended Particles 76 4.3.3 Equation of Ingredient Transport on Suspended Particles 77 4.3.4 Equations of Surface Water Dynamics 77 4.3.5 Equations of Adsorption and Sedimentation 78 4.4 Two Dimensional Horizontal Model and Stationary Flows 79 4.4.1 Equation of Ingredient Transport in Dissolved Phase 80 4.4.2 Equation of Suspended Particles Transport 80 4.4.3 Equation of Ingredient Transport on Suspended Particles 81 4.4.4 Equations of Water Dynamics 81 4.4.5 Equation of Ground Deposit Contamination 82 4.4.6 Analysis of Stationary Flow Problem 82 4.4.7 About Simulation Techniques 84 CHAPTER 3. VARIATIONAL MODELS AND STRUCTURAL STABILITY 85 1. VARIATIONAL PRINCIPLES AND MODELS 85 1.1 Basic Models of Continuum Mechanics 87 1.1.1 Vibrations of String 87 1.1.2 Transverse Vibrations of Bar 88 1.1.3 Vibrations of Membrane 88 1.1.4 Vibrations of Plate 89 1.2 Variational Models for Spectral Problems 90 1.2.1 Eigenvalues and Eigenfunctions: Simplest Case 90 1.2.2 Raleigh Quotient and Raleigh Method 91 1.2.3 Eigenvalues of Bar with Variable Shape 92 1.2.4 Extremal Eigenvalues of Bar with Sought For Shape 94 2. VARIATIONAL MODELS OF STRUCTURAL STABILITY 96 2.1 Model of Buckling Rod. 97 2.2 Model of Anti Plane Shear Collapse in Plasticity 98 2.3 Model of Capillarity Stability. 101 CHAPTER 4. INTEGRAL MODELS OF PHYSICAL SYSTEMS 105 1. CONSTRUCTION OF INTEGRAL MODELS 106 1.1 Converting Differential Models to Integral Models 106 1.1.1 Initial Value Problems 107 viii Applied Mathematical Modelling of Engineering Problems 1.1.2 Boundary Value Problems for Ordinary Differential Equations: Green s Function 112 1.1.3 Boundary Value Problems for Partial Differential Equations: Boundary Integral Equation Method 114 1.2 Integral Models Occurring in Physical Problems 120 1.2.1 Integral Model of Membrane Vibrations. 120 1.2.2 Integral Models of Nuclear Reactors Dynamics. 122 2. MODELLING OF TRAFFIC NOISE PROPAGATION 125 3. MODELLING OF MINE ROPE DYNAMICS 129 3.1 Description of Physical Process. 130 3.2 Differential Model 131 3.3 Integral Model 134 3.4 Some Generalizations. 137 CHAPTER 5. MODELING IN BIOENGINEERING 139 1. MODELS OF POPULATION DYNAMICS AND CONTROL 141 1.1 Classic Models for One Species Population 142 1.1.1 Malthus Model 142 1.1.2 Verhulst Pearl Model 144 1.1.3 Population Control and Harvesting 146 1.2 Age Dependent Models for One Species Population 148 1.2.1 Linear Integral Model (Lotka Model) 149 1.2.2 Linear Differential Model (Lotka Von Foerster Model) 150 1.2.3 Equivalence of Integral and Differential Models 151 1.3 Nonlinear Age Dependent Models with Intra Species Competition 152 1.4 Models with Delay 154 1.5 Difference Models 155 1.6 Spatial Diffusion Models of Population Dynamics 159 1.6.1 Random Walk Models 159 1.6.2 Diffusion Models 163 2. BIFURCATION ANALYSIS FOR NONLINEAR INTEGRAL MODELS 166 2.1 Stationary Solutions 167 2.2 Stability Analysis 168 2.2 Connection with Difference Models 177 Contents ix 2.3.1 Single Seasonal Reproduction 177 2.3.2 Double Seasonal Reproduction. 178 2.3 Open Problems 180 CHAPTER 6. MODELS OF TECHNOLOGICAL RENOVATION IN PRODUCTION SYSTEMS 183 1. TRADITIONAL MODELS OF TECHNOLOGICAL RENOVATION 184 1.1 Aggregated Models of Optimal Investments 185 1.2 Age Specific Models of Equipment Replacement 186 1.3 Statistical Models of Equipment Renewal 188 2. MODELS OF EQUIPMENT REPLACEMENT UNDER TECHNOLOGICAL CHANGE 189 2.1 Self Organizing Market Model of Enterprise Under Technological Change 190 2.2 Aggregated Model with Endogenous Useful Life of Equipment 194 2.2.1 Integral Macroeconomic Models of Technological Renovation 195 2.2.2 Statement of Optimization Problem 197 2.3 Disaggregated Integral Model of Equipment Replacement 199 2.3.1 Description of Production System 199 2.3.2 Construction of Model 200 2.3.3 About Prediction Problems 202 2.3.4 Statement of Optimization Problem 204 3. QUALITATIVE ANALYSIS OF OPTIMAL EQUIPMENT REPLACEMENT 206 3.1 About Optimal Control Problems in Integral Models 206 3.1.1 General Statement of Optimal Control Problem 207 3.1.2 Necessary Conditions of Extremum 208 3.1.3 Lagrange Mu ltipl iers Method 211 3.1.4 Novelty and Common Features 214 3.2 Optimal Equipment Replacement in Aggregate Model 215 3.2.1 Structure of Aggregated Optimization Problem 216 3.2.2 Equation for Turnpike Regimes of Equipment Replacement 218 3.2.3 Infinite Horizon Discounted Optimization 220 3.2.4 Finite Horizon Optimization 221 3.2.5 Discussion of Results 223 x Applied Mathematical Modelling of Engineering Problems 3.3 Optimal Equipment Replacement in Disaggregated Models225 3.3.1 Model with Different Lifetimes of Equipment 229 3.4 Open Problems 230 4. MATHEMATICAL DETAILS AND PROOFS 232 CHAPTER 7. APPENDIX 241 1. MISCELLANEOUS FACTS OF ANALYSIS 241 1.1 Vector and Integral Calculus 241 1.1.1 Gradient, Divergence and Rotation 241 1.1.2 Gauss Divergence Theorem. 242 1.1.3 Dubois Reymond s Lemma. 243 1.1.4 Leibniz s Formula for Derivatives 243 1.2 Functional Spaces 243 1.3 Calculus of Variations and Euler Equations 244 2. MATHEMATICAL MODELS AND EQUATIONS 245 2.1 Classification of Mathematical Models 245 2.1.1 Deterministic and Stochastic Models 245 2.1.2 Continuous and Discrete Models 246 2.1.3 Linear and Nonlinear Models 247 2.1.4 Difference, Differential and Integral Models 248 2.2 Integral Dynamical Models and Volterra Integral Equations 254 2.2.1 Solvability of Volterra Integral Equations 254 2.2.2 Correctness and Stability of Volterra Integral Equations 256 2.2.3 Stability of Volterra Integral Equations 258 2.2.4 Integral Inequalities 258 REFERENCES 261 INDEX 277
any_adam_object 1
author Hritonenko, Natali
author_facet Hritonenko, Natali
author_role aut
author_sort Hritonenko, Natali
author_variant n h nh
building Verbundindex
bvnumber BV017154136
callnumber-first T - Technology
callnumber-label TA342
callnumber-raw TA342
callnumber-search TA342
callnumber-sort TA 3342
callnumber-subject TA - General and Civil Engineering
classification_rvk SK 950
ctrlnum (OCoLC)52208363
(DE-599)BVBBV017154136
dewey-full 620/.001/5118
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 620 - Engineering and allied operations
dewey-raw 620/.001/5118
dewey-search 620/.001/5118
dewey-sort 3620 11 45118
dewey-tens 620 - Engineering and allied operations
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01813nam a2200469zcb4500</leader><controlfield tag="001">BV017154136</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060613 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030520s2003 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003051641</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402074840</subfield><subfield code="9">1-4020-7484-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52208363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017154136</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA342</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620/.001/5118</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hritonenko, Natali</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied mathematical modelling of engineering problems</subfield><subfield code="c">by Natali Hritonenko ; Yuri Yatsenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Norwell, Mass. [u.a.]</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 286 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied optimization</subfield><subfield code="v">81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 261-276) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jatsenko, Jurij</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied optimization</subfield><subfield code="v">81</subfield><subfield code="w">(DE-604)BV010841718</subfield><subfield code="9">81</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=010341207&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010341207</subfield></datafield></record></collection>
id DE-604.BV017154136
illustrated Illustrated
indexdate 2024-12-23T16:17:31Z
institution BVB
isbn 1402074840
language English
lccn 2003051641
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-010341207
oclc_num 52208363
open_access_boolean
owner DE-703
DE-20
DE-634
owner_facet DE-703
DE-20
DE-634
physical XXI, 286 S. Ill.
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Kluwer Acad. Publ.
record_format marc
series Applied optimization
series2 Applied optimization
spellingShingle Hritonenko, Natali
Applied mathematical modelling of engineering problems
Applied optimization
Ingenieurwissenschaften
Mathematisches Modell
Engineering Mathematical models
Mathematisches Modell (DE-588)4114528-8 gnd
Angewandte Mathematik (DE-588)4142443-8 gnd
subject_GND (DE-588)4114528-8
(DE-588)4142443-8
title Applied mathematical modelling of engineering problems
title_auth Applied mathematical modelling of engineering problems
title_exact_search Applied mathematical modelling of engineering problems
title_full Applied mathematical modelling of engineering problems by Natali Hritonenko ; Yuri Yatsenko
title_fullStr Applied mathematical modelling of engineering problems by Natali Hritonenko ; Yuri Yatsenko
title_full_unstemmed Applied mathematical modelling of engineering problems by Natali Hritonenko ; Yuri Yatsenko
title_short Applied mathematical modelling of engineering problems
title_sort applied mathematical modelling of engineering problems
topic Ingenieurwissenschaften
Mathematisches Modell
Engineering Mathematical models
Mathematisches Modell (DE-588)4114528-8 gnd
Angewandte Mathematik (DE-588)4142443-8 gnd
topic_facet Ingenieurwissenschaften
Mathematisches Modell
Engineering Mathematical models
Angewandte Mathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010341207&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV010841718
work_keys_str_mv AT hritonenkonatali appliedmathematicalmodellingofengineeringproblems
AT jatsenkojurij appliedmathematicalmodellingofengineeringproblems