An introduction to partial differential equations

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Renardy, Michael 1955- (VerfasserIn), Rogers, Robert C. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Springer 2004
Ausgabe:2. ed.
Schriftenreihe:Texts in applied mathematics 13
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV016972750
003 DE-604
005 20240522
007 t|
008 030311s2004 gw d||| |||| 00||| eng d
016 7 |a 966479513  |2 DE-101 
020 |a 0387004440  |9 0-387-00444-0 
020 |a 9780387004440  |c hbk  |9 978-0-387-00444-0 
020 |a 9781441918208  |c pbk  |9 978-1-4419-1820-8 
035 |a (OCoLC)51566394 
035 |a (DE-599)BVBBV016972750 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-29T  |a DE-739  |a DE-703  |a DE-91G  |a DE-355  |a DE-706  |a DE-19  |a DE-11  |a DE-188  |a DE-83  |a DE-573  |a DE-20 
050 0 |a QA374 
082 0 |a 515/.353  |2 21 
082 0 |a 515.353 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a MAT 350f  |2 stub 
084 |a 35-01  |2 msc 
100 1 |a Renardy, Michael  |d 1955-  |e Verfasser  |0 (DE-588)142008257  |4 aut 
245 1 0 |a An introduction to partial differential equations  |c Michael Renardy ; Robert C. Rogers 
250 |a 2. ed. 
264 1 |a New York [u.a.]  |b Springer  |c 2004 
300 |a XIV, 434 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Texts in applied mathematics  |v 13 
650 7 |a Análise numérica  |2 larpcal 
650 7 |a Equações diferenciais parciais  |2 larpcal 
650 7 |a Partiële differentiaalvergelijkingen  |2 gtt 
650 4 |a Differential equations, Partial 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 |5 DE-604 
700 1 |a Rogers, Robert C.  |e Verfasser  |0 (DE-588)128614854  |4 aut 
830 0 |a Texts in applied mathematics  |v 13  |w (DE-604)BV002476038  |9 13 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010250160&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-010250160 

Datensatz im Suchindex

DE-19_call_number 1699/SK 540 R394(2)+4
1699/SK 540 R394(2)+5
1601/Zi 329 Ren
1601/SK 540 R394(2)
1699/SK 540 R394(2)+3
1601/SK 540 R394(2)=HB Numerik
1699/SK 540 R394(2)+2
DE-19_location 95
DE-BY-TUM_call_number 0202 MAT 350f 2007 A 5829(2)
DE-BY-TUM_katkey 1594426
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020773399
DE-BY-UBM_katkey 4029481
DE-BY-UBM_media_number 99995526000
41610937750017
41610937710019
41610937720011
41610937740015
41610937730013
99995125962
DE-BY-UBR_call_number 00/SK 540 R394(2)
80/SK 540 R394(2)
8014/SK 540 R394(2)
803/SK 540 R394(2)
8071/SK 540 R394(2)
DE-BY-UBR_katkey 3872618
DE-BY-UBR_location 00
80
DE-BY-UBR_media_number 069035624713
069035624735
069035624724
TEMP12314784
TEMP12438581
TEMP12038883
_version_ 1823054202663862272
adam_text Contents Series Preface v Preface vii 1 Introduction 1 1.1 Basic Mathematical Questions ............... 2 1.1.1 Existence ....................... 2 1.1.2 Multiplicity ..................... 4 1.1.3 Stability....................... 6 1.1.4 Linear Systems of ODEs and Asymptotic Stability 7 1.1.5 Well-Posed Problems ................ 8 1.1.6 Representations ................... g 1.1.7 Estimation ...................... Ю 1.1.8 Smoothness ..................... 12 1.2 Elementary Partial Differential Equations ........ 14 1.2.1 Laplace s Equation ................. 15 1.2.2 The Heat Equation ................. 24 1.2.3 The Wave Equation ................. 30 2 Characteristics 3g 2.1 Classification and Characteristics ............. 3ß 2.1.1 The Symbol of a Differential Expression ..... 37 2.1.2 Scalar Equations of Second Order ......... З8 2.1.3 Higher-Order Equations and Systems ....... 41 χ Contents 2.1.4 Nonlinear Equations ................ 44 2.2 The Cauchy-Kovalevskaya Theorem ............ 46 2.2.1 Real Analytic Functions .............. 46 2.2.2 Majorization ..................... 50 2.2.3 Statement and Proof of the Theorem ....... 51 2.2.4 Reduction of General Systems ........... 53 2.2.5 A PDE without Solutions ............. 57 2.3 Holmgren s Uniqueness Theorem ............. 61 2.3.1 An Outline of the Main Idea ............ 61 2.3.2 Statement and Proof of the Theorem ....... 62 2.3.3 The Weierstraß Approximation Theorem ..... 64 3 Conservation Laws and Shocks 67 3.1 Systems in One Space Dimension ............. 68 3.2 Basic Definitions and Hypotheses ............. 70 3.3 Blowup of Smooth Solutions ................ 73 3.3.1 Single Conservation Laws ............. 73 3.3.2 The ρ System .................... 76 3.4 Weak Solutions ....................... 77 3.4.1 The Rankine-Hugoniot Condition ......... 79 3.4.2 Multiplicity ..................... 81 3.4.3 The Lax Shock Condition ............. 83 3.5 Riemann Problems ..................... 84 3.5.1 Single Equations .................. 85 3.5.2 Systems ....................... 86 3.6 Other Selection Criteria .................. 94 3.6.1 The Entropy Condition ............... 94 3.6.2 Viscosity Solutions ................. 97 3.6.3 Uniqueness ...................... 99 4 Maximum Principles 101 4.1 Maximum Principles of Elliptic Problems ......... 102 4.1.1 The Weak Maximum Principle ........... 102 4.1.2 The Strong Maximum Principle .......... 103 4.1.3 A Priori Bounds ................... 105 4.2 An Existence Proof for the Dirichlet Problem ...... 107 4.2.1 The Dirichlet Problem on a Ball .......... 108 4.2.2 Subharmonic Functions ............... 109 4.2.3 The Arzela-Ascoli Theorem ............ 110 4.2.4 Proof of Theorem 4.13............... 112 4.3 Radial Symmetry ...................... 114 4.3.1 Two Auxiliary Lemmas ............... 114 4.3.2 Proof of the Theorem ................ 115 4.4 Maximum Principles for Parabolic Equations ....... 117 4.4.1 The Weak Maximum Principle ........... 117 Contents xi 4.4.2 The Strong Maximum Principle .......... 118 Distributions 122 5.1 Test Functions and Distributions ............. 122 5.1.1 Motivation ...................... 122 5.1.2 Test Functions .................... 124 5.1.3 Distributions .................... 126 5.1.4 Localization and Regularization .......... 129 5.1.5 Convergence of Distributions ............ 130 5.1.6 Tempered Distributions .............. 132 5.2 Derivatives and Integrals .................. 135 5.2.1 Basic Definitions .................. 135 5.2.2 Examples ...................... 136 5.2.3 Primitives and Ordinary Differential Equations . 140 5.3 Convolutions and Fundamental Solutions ......... 143 5.3.1 The Direct Product of Distributions ....... 143 5.3.2 Convolution of Distributions ............ 145 5.3.3 Fundamental Solutions ............... 147 5.4 The Fourier Transform ................... 151 5.4.1 Fourier Transforms of Test Functions ....... 151 5.4.2 Fourier Transforms of Tempered Distributions . . 153 5.4.3 The Fundamental Solution for the Wave Equation 156 5.4.4 Fourier Transform of Convolutions ........ 158 5.4.5 Laplace Transforms ................. 159 5.5 Green s Functions ...................... 163 5.5.1 Boundary-Value Problems and their Adjoints . . 163 5.5.2 Green s Functions for Boundary-Value Problems . 167 5.5.3 Boundary Integral Methods ............ 170 Function Spaces 174 6.1 Banach Spaces and Hubert Spaces ............. 174 6.1.1 Banach Spaces .................... 174 6.1.2 Examples of Banach Spaces ............ 177 6.1.3 Hubert Spaces .................... 180 6.2 Bases in Hubert Spaces ................... 184 6.2.1 The Existence of a Basis .............. 184 6.2.2 Fourier Series .................... 188 6.2.3 Orthogonal Polynomials .............. 190 6.3 Duality and Weak Convergence .............. 194 6.3.1 Bounded Linear Mappings ............. 194 6.3.2 Examples of Dual Spaces .............. 195 6.3.3 The Hahn-Banach Theorem ............ 197 6.3.4 The Uniform Boundedness Theorem ....... 198 6.3.5 Weak Convergence ................. 199 xii Contents 7 Sobolev Spaces 203 7.1 Basic Definitions ...................... 204 7.2 Characterizations of Sobolev Spaces............ 207 7.2.1 Some Comments on the Domain Ω ........ 207 7.2.2 Sobolev Spaces and Fourier Transform ...... 208 7.2.3 The Sobolev Imbedding Theorem ......... 209 7.2.4 Compactness Properties .............. 210 7.2.5 The Trace Theorem ................. 214 7-3 Negative Sobolev Spaces and Duality ........... 218 7.4 Technical Results ...................... 220 7.4.1 Density Theorems .................. 220 7.4.2 Coordinate Transformations and Sobolev Spaces on Manifolds ...................... 221 7.4.3 Extension Theorems ................ 223 7.4.4 Problems ....................... 225 8 Operator Theory 228 8.1 Basic Definitions and Examples .............. 229 8.1.1 Operators ...................... 229 8.1.2 Inverse Operators .................. 230 8.1.3 Bounded Operators, Extensions .......... 230 8.1.4 Examples of Operators ............... 232 8.1.5 Closed Operators .................. 237 8.2 The Open Mapping Theorem ............... 241 8.3 Spectrum and Resolvent .................. 244 8.3.1 The Spectra of Bounded Operators ........ 246 8.4 Symmetry and Self-adjointness ............... 251 8.4.1 The Adjoint Operator ............... 251 8.4.2 The Hubert Adjoint Operator ........... 253 8.4.3 Adjoint Operators and Spectral Theory ...... 256 8.4.4 Proof of the Bounded Inverse Theorem for Hubert Spaces ........................ 257 8.5 Compact Operators ..................... 259 8.5.1 The Spectrum of a Compact Operator ...... 265 8.6 Sturm-Liouville Boundary-Value Problems ........ 271 8.7 The Fredholm Index .................... 279 9 Linear Elliptic Equations 283 9.1 Definitions .......................... 283 9.2 Existence and Uniqueness of Solutions of the Dirichlet Problem ........................... 287 9.2.1 The Dirichlet Problem—Types of Solutions ... 287 9.2.2 The Lax-Milgram Lemma ............. 290 9.2.3 Garding s Inequality ................ 292 9.2.4 Existence of Weak Solutions ............ 298 Contents xiii 9.3 Eigenfunction Expansions ................. 300 9.3.1 Fredholm Theory .................. 300 9.3.2 Eigenfunction Expansions ............. 302 9.4 General Linear Elliptic Problems ............. 303 9.4.1 The Neumann Problem ............... 304 9.4.2 The Complementing Condition for Elliptic Systems 306 9.4.3 The Adjoint Boundary-Value Problem ...... 311 9.4.4 Agmon s Condition and Coercive Problems .... 315 9.5 Interior Regularity ..................... 318 9.5.1 Difference Quotients ................ 321 9.5.2 Second-Order Scalar Equations .......... 323 9.6 Boundary Regularity .................... 324 10 Nonlinear Elliptic Equations 335 10.1 Perturbation Results .................... 335 10.1.1 The Banach Contraction Principle and the Implicit Function Theorem ................. 336 10.1.2 Applications to Elliptic PDEs ........... 339 10.2 Nonlinear Variational Problems .............. 342 10.2.1 Convex problems .................. 342 10.2.2 Nonconvex Problems ................ 355 10.3 Nonlinear Operator Theory Methods ........... 359 10.3.1 Mappings on Finite-Dimensional Spaces ..... 359 10.3.2 Monotone Mappings on Banach Spaces ...... 363 10.3.3 Applications of Monotone Operators to Nonlinear PDEs ......................... 366 10.3.4 Nemytskii Operators ................ 370 10.3.5 Pseudo-monotone Operators ............ 371 10.3.6 Application to PDEs ................ 374 11 Energy Methods for Evolution Problems 380 11.1 Parabolic Equations ..................... 380 11.1.1 Banach Space Valued Functions and Distributions 380 11.1.2 Abstract Parabolic Initial-Value Problems .... 382 11.1.3 Applications ..................... 385 11.1.4 Regularity of Solutions ............... 386 11.2 Hyperbolic Evolution Problems .............. 388 11.2.1 Abstract Second-Order Evolution Problems ... 388 11.2.2 Existence of a Solution ............... 389 11.2.3 Uniqueness of the Solution ............. 391 11.2.4 Continuity of the Solution ............. 392 12 Semigroup Methods 395 12.1 Semigroups and Infinitesimal Generators ......... 397 12.1.1 Strongly Continuous Semigroups ......... 397 xiv Contents 12.1.2 The Infinitesimal Generator............ 399 12.1.3 Abstract ODEs ................... 401 12.2 The Hille-Yosida Theorem................. 403 12.2.1 The Hille-Yosida Theorem............. 403 12.2.2 The Lumer-Phillips Theorem ........... 406 12.3 Applications to PDEs .................... 408 12.3.1 Symmetrie Hyperbolic Systems.......... 408 12.3.2 The Wave Equation................. 410 12.3.3 The Schrödinger Equation ............. 411 12.4 Analytic Semigroups .................... 413 12.4.1 Analytic Semigroups and Their Generators .... 413 12.4.2 Fractional Powers .................. 416 12.4.3 Perturbations of Analytic Semigroups ....... 419 12.4.4 Regularity of Mild Solutions ............ 422 A References 426 A.I Elementary Texts ...................... 426 A.2 Basic Graduate Texts .................... 427 A.3 Specialized or Advanced Texts ............... 427 A.4 Multivolume or Encyclopedic Works ............ 429 A.5 Other References ...................... 429 Index 431
any_adam_object 1
author Renardy, Michael 1955-
Rogers, Robert C.
author_GND (DE-588)142008257
(DE-588)128614854
author_facet Renardy, Michael 1955-
Rogers, Robert C.
author_role aut
aut
author_sort Renardy, Michael 1955-
author_variant m r mr
r c r rc rcr
building Verbundindex
bvnumber BV016972750
callnumber-first Q - Science
callnumber-label QA374
callnumber-raw QA374
callnumber-search QA374
callnumber-sort QA 3374
callnumber-subject QA - Mathematics
classification_rvk SK 540
classification_tum MAT 350f
ctrlnum (OCoLC)51566394
(DE-599)BVBBV016972750
dewey-full 515/.353
515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.353
515.353
dewey-search 515/.353
515.353
dewey-sort 3515 3353
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02113nam a2200529 cb4500</leader><controlfield tag="001">BV016972750</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240522 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030311s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">966479513</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387004440</subfield><subfield code="9">0-387-00444-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387004440</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-387-00444-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441918208</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-4419-1820-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51566394</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV016972750</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA374</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Renardy, Michael</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142008257</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to partial differential equations</subfield><subfield code="c">Michael Renardy ; Robert C. Rogers</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 434 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">13</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Análise numérica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equações diferenciais parciais</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogers, Robert C.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128614854</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV002476038</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=010250160&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010250160</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV016972750
illustrated Illustrated
indexdate 2025-02-03T17:14:18Z
institution BVB
isbn 0387004440
9780387004440
9781441918208
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-010250160
oclc_num 51566394
open_access_boolean
owner DE-29T
DE-739
DE-703
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-706
DE-19
DE-BY-UBM
DE-11
DE-188
DE-83
DE-573
DE-20
owner_facet DE-29T
DE-739
DE-703
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-706
DE-19
DE-BY-UBM
DE-11
DE-188
DE-83
DE-573
DE-20
physical XIV, 434 S. graph. Darst.
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Springer
record_format marc
series Texts in applied mathematics
series2 Texts in applied mathematics
spellingShingle Renardy, Michael 1955-
Rogers, Robert C.
An introduction to partial differential equations
Texts in applied mathematics
Análise numérica larpcal
Equações diferenciais parciais larpcal
Partiële differentiaalvergelijkingen gtt
Differential equations, Partial
Partielle Differentialgleichung (DE-588)4044779-0 gnd
subject_GND (DE-588)4044779-0
(DE-588)4123623-3
title An introduction to partial differential equations
title_auth An introduction to partial differential equations
title_exact_search An introduction to partial differential equations
title_full An introduction to partial differential equations Michael Renardy ; Robert C. Rogers
title_fullStr An introduction to partial differential equations Michael Renardy ; Robert C. Rogers
title_full_unstemmed An introduction to partial differential equations Michael Renardy ; Robert C. Rogers
title_short An introduction to partial differential equations
title_sort an introduction to partial differential equations
topic Análise numérica larpcal
Equações diferenciais parciais larpcal
Partiële differentiaalvergelijkingen gtt
Differential equations, Partial
Partielle Differentialgleichung (DE-588)4044779-0 gnd
topic_facet Análise numérica
Equações diferenciais parciais
Partiële differentiaalvergelijkingen
Differential equations, Partial
Partielle Differentialgleichung
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010250160&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV002476038
work_keys_str_mv AT renardymichael anintroductiontopartialdifferentialequations
AT rogersrobertc anintroductiontopartialdifferentialequations