Biochemistry of lipids, lipoproteins, and membranes

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] Elsevier 2002
Ausgabe:4. ed.
Schriftenreihe:New comprehensive biochemistry 36
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV015023213
003 DE-604
005 20090323
007 t|
008 021203s2002 ne ad|| |||| 00||| eng d
010 |a 2002192786 
020 |a 0444511385  |9 0-444-51138-5 
020 |a 0444511393  |9 0-444-51139-3 
035 |a (OCoLC)51001207 
035 |a (DE-599)BVBBV015023213 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a ne  |c NL 
049 |a DE-355  |a DE-703  |a DE-12  |a DE-19  |a DE-188 
050 0 |a QD415 
050 0 |a QP751 
082 0 |a 572/.57  |2 21 
084 |a WD 4000  |0 (DE-625)148175:  |2 rvk 
245 1 0 |a Biochemistry of lipids, lipoproteins, and membranes  |c ed.: Dennis E. Vance and Jean E. Vance 
250 |a 4. ed. 
264 1 |a Amsterdam [u.a.]  |b Elsevier  |c 2002 
300 |a XXIX, 607 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a New comprehensive biochemistry  |v 36 
500 |a Includes bibliographical references and index 
650 7 |a Lipid Metabolism  |2 cabt 
650 7 |a Lipids  |2 cabt 
650 7 |a Lipoproteins  |2 cabt 
650 7 |a Cell Membranes  |2 cabt 
650 7 |a Biochemistry  |2 cabt 
650 4 |a Lipides - Métabolisme 
650 4 |a Lipoprotéines - Métabolisme 
650 4 |a Membranes lipidiques 
650 4 |a Cell Membrane  |x physiology 
650 4 |a Lipid Metabolism 
650 4 |a Lipid membranes 
650 4 |a Lipids  |x Metabolism 
650 4 |a Lipoproteins  |x Metabolism 
650 4 |a Lipoproteins  |x metabolism 
650 4 |a Signal Transduction 
650 0 7 |a Lipoproteide  |0 (DE-588)4074259-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Lipide  |0 (DE-588)4035873-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Lipidmembran  |0 (DE-588)4167790-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Membranlipide  |0 (DE-588)4203814-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Biomembran  |0 (DE-588)4006884-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Biochemie  |0 (DE-588)4006777-4  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Lipide  |0 (DE-588)4035873-2  |D s 
689 0 1 |a Lipoproteide  |0 (DE-588)4074259-3  |D s 
689 0 2 |a Biomembran  |0 (DE-588)4006884-5  |D s 
689 0 3 |a Biochemie  |0 (DE-588)4006777-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Lipidmembran  |0 (DE-588)4167790-0  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Membranlipide  |0 (DE-588)4203814-5  |D s 
689 2 |8 3\p  |5 DE-604 
700 1 |a Vance, Dennis E.  |e Sonstige  |4 oth 
700 1 |a Vance, Jean E.  |e Sonstige  |4 oth 
830 0 |a New comprehensive biochemistry  |v 36  |w (DE-604)BV000003914  |9 36 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010091679&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-010091679 

Datensatz im Suchindex

DE-19_call_number 1900/WD 4000 F639 N4-36
DE-19_location 29
DE-BY-UBM_katkey 3745839
DE-BY-UBM_media_number 41609666230010
_version_ 1823053853835132928
adam_text Contents Preface v List of contributors vii Other volumes in the series xxvii Chapter 1. Functional roles of lipids in membranes William Dowhan and Mikhail Bogdanov 1 1. Introduction and overview 1 2. Diversity in lipid structure 2 2.1. Glycerol based lipids 2 2.2. Diglucoseamine phosphate based lipids 5 3. Properties of lipids in solution 7 3.1. Why do polar lipids self associate? 7 3.2. Physical properties of membrane bilayers 10 3.3. Special properties of cardiolipin 12 3.4. What does the membrane bilayer look like? 12 4. Engineering of membrane lipid composition 13 4.1. Alteration of lipid composition in bacteria 15 4.2. Alteration of lipid composition in yeast 16 5. Role of lipids in cell function 17 5.1. The bilayer as a supramolecular lipid matrix 17 5.1.1. Physical organization of the bilayer 17 5.1.2. Biological importance of non bilayer lipids 18 5.2. Selectivity of protein lipid interactions 19 5.2.1. Lipid association with a helical proteins 20 5.2.2. Lipid association with fi barrel proteins 22 5.2.3. Organization of protein complexes 22 5.2.4. Binding sites for peripheral membrane proteins 23 5.3. Translocation of proteins across membranes 24 5.4. Assembly of integral membrane proteins 25 5.4.1. Lipid assisted folding of membrane proteins 25 5.4.2. Scope of lipochaperone function 28 5.5. Lipid domains 28 5.5.1. Lipid rafts 29 5.5.2. Lipid domains in bacteria 31 5.6. Cytokinesis 31 6. Future directions 32 Abbreviations 33 References 33 xii Chapter 2. Lipid modifications of proteins Nikola A. Baumann and Anant K. Menon 37 1. Preamble 37 2. Protein prenylation 37 2.1. The CaaX prenyltransferases FTase and GGTase I 40 3. Myristoylation 41 3.1. AT Myristoyltransferase (NMT) 41 3.2. Myristoyl switches to regulate protein function 41 4. Protein thioacylation 42 4.1. Examples of thioacylated proteins 42 4.2. Membrane anchoring of thioacylated proteins: the need for multiple lipid modifications and the role of dynamic thioacylation 43 4.3. Thioesterases 44 5. Cholesterol modification 45 5.1. Addition of cholesterol to hedgehog proteins 46 5.2. Biological significance of cholesterol modification 46 6. GPI anchoring of proteins 47 6.1. Biosynthesis of GPI 47 6.2. Subcellular location and membrane topology of GPI biosynthesis 49 6.3. Attachment of GPIs to proteins 49 6.4. GPI anchoring in mammals, parasitic protozoa and yeast 51 6.5. Functions of GPI anchors 52 7. Future directions 52 Abbreviations 53 References 53 Chapter 3. Fatty acid and phospholipid metabolism in prokaryotes Richard J. Heath, Suzanne Jackowski and Charles O. Rock 55 1. Bacterial lipid metabolism 55 2. Membrane systems of bacteria 56 3. Bacterial fatty acid biosynthesis 57 3.1. Acyl carrier protein 57 3.2. Acetyl CoA carboxylase 59 3.3. Initiation of fatty acid biosynthesis 60 3.4. Elongation of acyl chains 61 3.4.1. The p ketoacyl ACP synthases 61 3.4.2. f5 Ketoacyl ACP reductase 62 3.4.3. p Hydroxyacyl ACP dehydrase 62 3.4.4. Enoyl ACP reductase 63 3.5. Synthesis of unsaturated fatty acids 63 3.6. Afterword: dissociable or dissociated enzymes? 64 4. Transfer to the membrane 65 5. Phospholipid biosynthesis 66 5.1. Phosphatidate cytidylyltransferase 66 5.2. Phosphatidylethanolamine production 68 5.2.1. Phosphatidylserine synthase 68 5.2.2. Phosphatidylserine decarboxylase 68 5.3. Phosphatidylglycerol synthesis 69 5.3.1. Phosphatidylglycerolphosphate synthase 69 5.3.2. PGP phosphatases 69 xiii 5.4. Cardiolipin biosynthesis 70 5.5. Cyclopropane fatty acids 70 6. Lipid A biosynthesis 71 7. Phospholipid flippase 73 8. Degradation of fatty acids and phospholipids 74 8.1. P Oxidation of fatty acids 74 8.1.1. Transport of fatty acids across the membrane 74 8.1.2. Degradation of fatty acids 74 8.2. Phospholipases 76 8.3. Thioesterases 77 9. Phospholipid turnover 78 9.1. The diacylglycerol cycle 78 9.2. The 2 acylglycerolphosphoethanolamine cycle 78 10. Regulation of lipid metabolism 80 10.1. Regulation of fatty acid chain length 80 10.2. Temperature modulation of fatty acid composition 80 10.3. Transcriptional regulation of the genes of fatty acid synthesis and degradation 81 10.4. Regulation of phospholipid headgroup composition 82 10.5. Coordinate regulation of fatty acid and phospholipid synthesis with macromolecular biosynthesis 82 11. Lipid metabolism in other bacteria 84 11.1. Analysis of lipid metabolism by genomic inference 84 11.2. Branched chain fatty acid biosynthesis 85 11.3. Other ways to make unsaturated fatty acids 85 11.4. Bacteria with other phospholipid headgroups 86 11.5. Bacteria with a type I fatty acid synthase 87 11.6. Lipid synthesis in Archea 87 11.7. Other organisms with a bacterial like fatty acid synthase system 87 12. Inhibitors of lipid metabolism 88 12.1. p Decynoyl Af acetylcysteamine 88 12.2. Cerulenin and thiolactomycin 88 12.3. Diazaborines, isoniazid and triclosan 89 12.4. Lipid A biosynthesis inhibitors 89 13. Future directions 90 Abbreviations 90 References 91 Chapter 4. Lipid metabolism in plants Katherine M. Schmid and John B. Ohlrogge 93 1. Introduction 93 2. Plant lipid geography 94 2.1. Plastids 94 2.2. Endoplasmic reticulum and lipid bodies 98 2.3. Mitochondria 98 2.4. Glyoxysomes and peroxisomes 98 3. Acyl ACP synthesis in plants 99 3.1. Components of plant fatty acid synthase 99 3.2. Desaturation of acyl ACPs 100 3.3. Acyl ACP thioesterases 100 4. Acetyl CoA carboxylase and control of fatty acid synthesis 101 4.1. Two forms of acetyl CoA carboxylase 101 4.2. Acetyl CoA carboxylase as control point 101 xiv 5. Phosphatidic acid synthesis: prokaryotic and eukaryotic acyltransferases 102 5.1. Plastidial acyltransferases 102 5.2. Extraplastidial acyltransferases 102 5.3. 16:3 and 18:3 plants 103 6. Glycerolipid synthesis pathways 103 6.1. Glycerolipids as substrates for desaturation 104 7. Lipid storage in plants 105 7.1. Lipid body structure and biogenesis 105 7.2. Seed triacylglycerols often contain unusual fatty acids 106 7.3. The pathway of triacylglycerol biosynthesis 107 7.4. Challenges in understanding triacylglycerol synthesis 108 8. Protective lipids 109 9. Sterol, isoprenoid and sphingolipid biosynthesis 109 10. Oxylipins as plant hormones 112 11. Progress in plant lipid research: the value of mutants 114 11.1. Mutants in lipid metabolism have helped link lipid structure and function 114 11.2. Arabidopsis mutants have allowed cloning of desaturases and elongases 117 12. Design of new plant oils 118 12.1. Design of new edible oils 119 12.1.1. Improvements in nutritional value and stability of vegetable oils 119 12.1.2. Alternatives to hydrogenated margarines and shortenings 120 12.2. Design of new industrial oils 121 12.2.1. High laurate and caprate oils 121 12.2.2. Production of waxes 122 12.2.3. Other industrial oils 123 13. Future prospects 123 Abbreviations 125 References 125 Chapter 5. Oxidation of fatty acids in eukaryotes HorstSchulz 127 1. The pathway of p oxidafion: a historical account 127 2. Uptake and activation of fatty acids in animal cells 128 3. Fatty acid oxidation in mitochondria 130 3.1. Mitochondrial uptake of fatty acids 130 3.2. Enzymes of P oxidation in mitochondria 132 3.3. P Oxidation of unsaturated fatty acids 137 3.4. Regulation of fatty acid oxidation in mitochondria 139 4. Fatty acid oxidation in peroxisomes 142 4.1. Fatty acid uptake by peroxisomes 142 4.2. Pathways and enzymology of peroxisomal a oxidation and P oxidation 143 5. Inherited diseases of fatty acid oxidation 146 6. Future directions 148 Abbreviations 148 References 148 Chapter 6. Fatty acid synthesis in eukaryotes Vangipuram S. Rangan and Stuart Smith 151 1. Introduction 151 2. Acetyl CoA carboxylase 152 XV 2.1. The reaction sequence 152 2.2. Domain organization 152 2.3. Isoforms 153 3. Fatty acid synthase 153 3.1. The reaction sequence 153 3.2. The catalytic components 154 3.3. Domain organization 155 3.4. Chain initiation 156 3.5. Chain termination and product specificity 157 3.6. Interdomain communication 158 4. Short term regulation of fatty acid synthesis 161 4.1. Regulation of substrate supply for fatty acid synthesis 161 4.2. Regulation of acetyl CoA carboxylase a activity by reversible phosphorylation 162 4.3. Malonyl CoA, fuel sensing and appetite control 164 5. Regulation of the intracellular concentration of lipogenic enzymes 165 5.1. Strategies and methodology 165 5.2. The acetyl CoA carboxylase promoter 166 5.3. The fatty acid synthase promoter 167 5.4. Transcriptional regulation of lipogenic gene expression in response to dietary carbohydrate 168 5.4.1. The role of SREBPs 170 5.4.2. The role of SREBP co activators 171 5.4.3. TheroleofUSFs 172 5.4.4. The role of carbohydrate response elements 172 5.4.5. Signaling pathways 172 5.4.6. The role of thyroid hormone 173 5.4.7. Down regulation during fasting 173 5.4.8. Summary 174 5.5. Transcriptional regulation of lipogenic gene expression in response to dietary polyunsatu rated fatty acids 174 5.6. Transcriptional regulation during development 175 6. Future directions 175 Abbreviations 177 References 177 Chapter 7. Fatty acid desaturation and chain elongation in eukaryotes Harold W. Cook and Christopher R. McMaster 181 1. Introduction 181 1.1. Physical consequences of fatty acyl chain desaturation and elongation 181 1.2. Fatty acyl chains and biology 182 2. Chain elongation of long chain fatty acids 183 2.1. Endoplasmic reticulum elongation system 184 2.2. Mitochondrial elongation system 186 2.3. Functions of elongation systems 186 3. Formation of monounsaturated fatty acids by oxidative desaturation 187 3.1. Nomenclature to describe double bonds 187 3.2. Characteristics of monounsaturated fatty acid forming desaturation enzymes 188 3.3. Modification of A9 desaturase activities in vitro 190 3.4. Age related, dietary and hormonal regulation of A9 desaturase 190 4. Formation of polyunsaturated fatty acids 192 4.1. Characteristics in animal systems 192 4.2. Essential fatty acids — a contribution of plant systems 193 4.3. Families of fatty acids and their metabolism 193 xvi 4.3.1. The n 6 family 194 4.3.2. The n 3 family 196 4.3.3. The n 9 family 197 4.3.4. The n 7 family 198 5. Unsaturated fatty acids with trans double bonds 198 5.1. General properties 198 5.2. Trans polyenoic fatty acids 198 5.3. Fatty acids with conjugated double bonds 199 6. Abnormal patterns of distribution and metabolism of long chain saturated and unsaturated fatty acids 199 6.1. Deficiency of essential fatty acids and related nutrients 199 6.2. Relationships to plasma cholesterol 200 7. Regulation through sensors and receptors 201 7.1. Membrane sensing factors and response elements 201 7.2. Peroxisomal proliferator activated receptors (PPARs) 201 8. Future directions 201 Abbreviations 202 References 202 Chapter 8. Phospholipid biosynthesis in eukaryotes Dennis E. Vance 205 1. Introduction 205 2. Phosphatidic acid biosynthesis and conversion to diacylglycerol 205 2.1. Glycerol 3 P acyltransferase 205 2.2. l Acylglycerol 3 P acyltransferase 207 2.3. Dihydroxyacetone P acyltransferase 208 2.4. Phosphatidic acid phosphatase 208 3. Phosphatidylcholine biosynthesis 209 3.1. Historical background 209 3.2. Choline transport and oxidation 210 3.3. Choline kinase 210 3.4. CTP: phosphocholine cytidylyltransferase 211 3.5. CDP choline: 1,2 diacylglycerol cholinephosphotransferase 212 3.6. Phosphatidylethanolamine Af methyltransferase 213 4. Regulation of phosphatidylcholine biosynthesis 215 4.1. The rate limiting reaction 215 4.2. The translocation hypothesis 216 4.3. Regulation of phosphatidylcholine biosynthesis by lipids 216 4.4. Phosphorylation of cytidylyltransferase 218 4.5. Transcriptional and post transcriptional regulation of CTa 218 4.6. Transgenic and gene disrupted murine models of CTa 219 5. Phosphatidylethanolamine biosynthesis 219 5.1. Historical background and biosynthetic pathways 219 5.2. Enzymes of the CDP ethanolamine pathway 220 5.3. Regulation of the CDP ethanolamine pathway 222 5.4. Phosphatidylserine decarboxylase 222 6. Phosphatidylserine biosynthesis 222 6.1. Historical developments and biosynthesis 222 6.2. Chinese hamster ovary cell mutants and regulation 223 7. Inositol phospholipids 224 7.1. Historical developments 224 7.2. CDP diacylglycerol synthase 224 xvii 7.3. Phosphatidylinositol synthase 224 8. Polyglycerophospholipids 225 8.1. Historical developments and biosynthetic pathways 225 8.2. Enzymes and subcellular location 226 9. Remodeling of the acyl substituents of phospholipids 227 10. Regulation of gene expression in yeast 229 11. Future directions 230 Abbreviations 231 References 231 Chapter 9. Ether linked lipids and their bioactive species Fred Snyder, Ten ching Lee and Robert L. Wykle 233 1. Introduction 233 2. Historical highlights 233 3. Natural occurrence 235 4. Physical properties 237 5. Biologically active ether lipids 237 5.1. Platelet activating factor 237 5.2. Other ether linked mediators 239 5.3. Oxidized phospholipids 239 5.4. Receptors, overexpression, and knockout mice 239 5.5. Receptor antagonists 240 6. Enzymes involved in ether lipid synthesis 240 6.1. Ether lipid precursors 240 6.1.1. Acyl Co A reductase 240 6.1.2. Dihydroxyacetone P acyltransferase 241 6.2. Ether lipids 241 6.2.1. O Alkyl bond: mechanism of formation 241 6.2.2. O Alkyl analog of phosphatidic acid and alkylacylglycerols 243 6.2.3. Neutral ether linked glycerolipid 244 6.2.4. O Alkyl choline and ethanolamine containing phospholipids 244 6.2.5. Ethanolamine plasmalogens 245 6.2.6. Choline plasmalogens 245 6.3. PAF and related bioactive species 246 6.3.1. Remodeling route 246 6.3.2. De novo route 250 6.3.3. PAF transacetylase 250 7. Catabolic enzymes 253 7.1. Ether lipid precursors 253 7.1.1. Fatty alcohols 253 7.1.2. Dihydroxyaeetone P and acyldihydroxyacetone P 253 7.2. Ether linked lipids 254 7.2.1. O Alkyl cleavage enzyme 254 7.2.2. Plasmalogenases 255 7.2.3. Phospholipases and Upases 255 7.3. PAF and related bioactive species 255 7.3.1. Acetylhydrolase 255 8. Metabolic regulation 257 9. Functions 259 9.1. Membrane components 259 9.2. Cell mediators 259 10. Future directions 259 References 260 xviii Chapter 10. Adipose tissue and lipid metabolism David A. Bernlohr, Anne E. Jenkins and Assumpta A. Bennaars 263 1. Introduction 263 2. Adipose development 263 2.1. Development of white and brown adipose tissue in vivo 263 2.2. In situ models of adipose conversion 264 2.3. Transcriptional control during development 265 2.3.1. C/EBP family of transcription factors 265 2.3.2. PPAR/RXR family of transcription factors 266 2.3.3. SREBP family of factors 268 3. Biochemical aspects of lipid metabolism 269 3.1. Lipid delivery to adipose tissue 269 3.2. Fatty acid uptake and trafficking 269 3.3. Glucose transport and the generation of the triacylglycerol backbone 270 3.4. Fatty acid and triacylglycerol biosynthesis 271 3.5. Triacylglycerol mobilization 272 3.5.1. Catecholamines and adrenoreceptors in adipocytes 275 3.5.2. Glucagon 276 3.5.3. Steroid and thyroid hormone 277 3.5.4. Insulin and anti lipolysis 277 3.6. Brown fat lipid metabolism 279 3.6.1. Triacylglycerol synthesis and storage 280 3.6.2. Fatty acid oxidation, bioenergetics and thermogenesis 281 4. Molecular cell biology of adipose tissue 282 4.1. Energy balance and basal metabolic rate 282 4.2. The hypothalamus adipocyte circuit and the ob gene 283 4.3. Cytokine control of adipose lipid metabolism 285 5. Future directions 286 Abbreviations 287 References 288 Chapter 11. Phospholipases David C. Wilton and Moseley Waite 291 1. Overview 291 1.1. Definition of phospholipases 291 1.2. Assay of phospholipases 292 1.3. Interaction of phospholipases with interfaces 293 1.3.1. Substrate effects 294 1.3.2. Enzyme effects 295 2. The phospholipases 296 2.1. Phospholipase A [ 296 2.1.1. Escherichia coli phospholipases A 296 2.1.2. Upases with phospholipase Ai activity 298 2.2. Phospholipase B and lysophospholipases 298 2.2.1. Phospholipase B from microorganisms 298 2.2.2. Mammalian lysophospholipases 298 2.3. Phospholipase hz 299 2.3.1. The 14 kDa secreted phospholipases Ai 299 2.3.2. Phospholipases A^ that involve a catalytic serine residue 307 2.4. Phospholipase C 310 xix 2.4.1. Bacterial phospholipases C 310 2.4.2. Mammalian phospholipases C 310 2.5. Phospholipase D 311 3. Future directions 312 Abbreviations 313 References 313 Chapter 12. Glycerolipids in signal transduction Linda C. McPhail 315 1. Introduction 315 2. Inositol phosphates 316 2.1. Mechanisms of generation and metabolism 316 2.1.1. Phosphoinositide hydrolyzing phospholipase C 316 2.1.2. Inositol phosphate kinases and phosphatases 319 2.2. Cellular targets 320 2.2.1. Control of intracellular calcium levels by inositol 1,4,5 trisphosphate 320 2.2.2. Targets for other inositol phosphates 320 3. Diacylglycerols 320 3.1. Mechanisms of generation and metabolism 320 3.1.1. Hydrolysis of phospholipids 320 3.1.2. Diacylglycerol kinases 322 3.2. Protein kinase C is an important target for diacylglycerol 323 3.3. Non PKC targets of diacylglycerol 324 4. Phospholipase D and the generation of phosphatidic acid 325 4.1. Discovery and molecular nature of phospholipase D 325 4.2. Localization and regulation of phospholipase D 326 4.3. Functions regulated by phospholipase D and phosphatidic acid 327 4.3.1. Membrane trafficking, secretion and cell proliferation 327 4.3.2. NADPH oxidase 328 5. Phosphoinositides 328 5.1. Phosphoinositide kinases and phosphatases 330 5.1.1. Phosphatidylinositol 4 and 5 kinases 330 5.1.2. Phosphoinositide 3 kinases 330 5.1.3. PTEN and other phosphoinositide phosphatases 332 5.2. Cellular targets 335 5.2.1. Domains that bind polyphosphoinositides 335 5.2.2. Domains that bind phosphatidylinositol 3 phosphate 336 6. Lysophosphatidic acid and other lysophospholipids 337 6.1. Sources of lysophospholipids 337 6.2. Lysophospholipids are extracellular signaling molecules 337 7. Future directions 338 Abbreviations 338 References 339 Chapter 13. The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways William L. Smith and Robert C. Murphy 341 1. Introduction 341 1.1. Terminology, structures, and nomenclature 341 1.2. Prostanoid chemistry 343 XX 2. Prostanoid biosynthesis 344 2.1. Mobilization of arachidonate 344 2.2. Cytosolic and secreted phospholipase AiS 344 2.3. Mobilization of 2 arachidonyl glycerol (2 AG) 346 2.4. Prostaglandin endoperoxide Hi (PGH2) formation 346 2.5. PGHS active site 347 2.6. Physico chemical properties of PGHSs 348 2.7. PGHSs and nonsteroidal anti inflammatory drugs 349 2.8. Regulation of PGHS 1 and PGHS 2 gene expression 350 2.9. PGH2 metabolism 352 3. Prostanoid catabolism and mechanisms of action 353 3.1. Prostanoid catabolism 353 3.2. Physiological actions of prostanoids 353 3.3. Prostanoid receptors 353 4. Leukotrienes and lipoxygenase products 354 4.1. Introduction and overview 354 4.2. Leukotriene biosynthesis 356 4.3. Enzymes involved in leukotriene biosynthesis 357 4.3.1. 5 Lipoxygenase 357 4.3.2. 5 Lipoxygenase activating protein (FLAP) 358 4.3.3. LTA4 hydrolase 358 4.3.4. LTC4 synthase 359 4.4. Regulation of leukotriene biosynthesis 359 4.5. Metabolism of leukotrienes 361 4.6. Biological activities of leukotrienes 362 4.7. Other lipoxygenase pathways 364 4.7.1. 12 Lipoxygenase 364 4.7.2. 15 Lipoxygenase 365 5. Cytochrome P 450s and epoxygenase pathways 366 5.1. Epoxygenase P 450 isozymes 367 5.2. Occurrence of EETs 367 5.3. Metabolism of EETs 367 5.4. Biological actions of EETs 368 6. Future directions 368 Abbreviations 369 References 369 Chapter 14. Sphingolipids: metabolism and cell signaling AlfredH. MerrillJr. andKonradSandhoff 373 1. Introduction 373 1.1. Biological significance of sphingolipids 374 1.1.1. Biological structures 374 1.1.2. Biological recognition 375 1.1.3. Signal transduction 376 1.2. Structures and nomenclature of sphingolipids 376 2. Chemistry and distribution 380 2.1. Sphingoid bases 380 2.2. Ceramides 380 2.3. Phosphosphingolipids 383 2.4. Glycosphingolipids 383 2.4.1. Neutral glycosphingolipids 383 2.4.2. Acidic glycosphingolipids 383 xxi 2.5. Lysosphingolipids 385 2.6. Sphingolipids covalently linked to proteins 385 2.7. Sphingolipids in food 385 3. Biosynthesis of sphingolipids 385 3.1. Sphingoid bases and ceramide 386 3.1.1. Synthesis of the long chain base backbone 386 3.1.2. Synthesis of the iV acyl derivatives of sphingoid bases 389 3.2. Sphingomyelin and ceramide phosphorylethanolamine 389 3.3. Neutral glycosphingolipids 390 3.4. Gangliosides 392 3.5. Sulfatoglycosphingolipids 393 4. Sphingolipid catabolism 393 4.1. Sphingomyelin 395 4.2. Glycosphingolipids 395 4.3. Ceramide 396 4.4. Sphingosine 397 5. Regulation of sphingolipid metabolism 398 5.1. De novo sphingolipid biosynthesis versus turnover in generating bioactive (signaling) metabolites 398 5.2. Complex sphingolipid formation in tissue development 398 5.3. Neural development and function 400 5.4. Physiology (and pathophysiology) of the intestinal tract 400 5.5. Oncogenic transformation, tumor antigens, and immunomodulation 400 6. Sphingolipids and signal transduction 401 6.1. Interactions between gangliosides and growth factor receptors 401 6.2. Hydrolysis to bioactive lipid backbones 401 6.2.1. Ceramide 402 6.2.2. Sphingoid bases 402 6.2.3. Sphingosine 1 phosphate 403 7. Bioactive sphingolipids appear to be at the heart of numerous aspects of cell regulation in normal and pathologic conditions 403 8. Future directions 404 Abbreviations 405 References 406 Chapter 15. Cholesterol biosynthesis Laura Liscum 409 1. Introduction 409 2. The cholesterol biosynthetic pathway 410 2.1. Enzyme compartmentalization 415 2.2. Mevalonic aciduria 416 2.3. Smith Lemli Opitz syndrome 417 2.4. Other enzyme deficiencies 418 3. Regulation of cholesterol synthesis 418 3.1. Transcriptional regulation 419 3.2. mRNA translation 422 3.3. Phosphorylation 422 3.4. Proteolysis 423 3.5. Sterol sensing domain 425 4. Metabolism of cholesterol 426 4.1. Oxysterols 426 4.2. Cholesteryl ester synthesis 428 xxii 5. Future directions 429 Abbreviations 429 References 430 Chapter 16. Metabolism and function of bile acids Luis B. Agellon 433 1. Introduction 433 2. Bile acid structure 433 3. Biosynthesis of bile acids 436 3.1. The classical and alternative bile acid biosynthetic pathways 436 3.2. Mutations affecting key enzymes involved in bile acid biosynthesis 438 4. Transport of bile acids 439 4.1. Enterohepatic circulation 439 4.2. Intracellular transport 441 5. Molecular regulation of key enzymes in the bile acid biosynthetic pathways 441 5.1. Transcriptional control 442 5.2. Post transcriptional control 445 6. Future directions 446 Abbreviations 446 References 447 Chapter 17. Lipid assembly into cell membranes Dennis R. Voelker 449 1. Introduction 449 2. The diversity of lipids 449 3. Methods to study intra and inter membrane lipid transport 451 3.1. Fluorescent probes 451 3.2. Spin labeled analogs 452 3.3. Asymmetric chemical modification of membranes 453 3.4. Phospholipid transfer proteins 454 3.5. Rapid plasma membrane isolation 455 3.6. Organelle specific lipid metabolism 456 4. Lipid transport processes 457 4.1. Intramembrane lipid translocation and model membranes 457 4.2. Intramembrane lipid translocation and biological membranes 459 4.2.1. Prokaryotes 459 4.2.2. Eukaryotes 459 4.3. Intermembrane lipid transport 463 4.3.1. Transport in prokaryotes 463 4.3.2. Transport in eukaryotes 465 5. Future directions 479 Abbreviations 480 References 480 Chapter 18. Lipoprotein structure Ana Jonas 483 1. Introduction 483 1.1. Main lipoprotein classes 483 xxiii 1.2. Lipoprotein subclasses 484 2. Lipid components 486 2.1. Lipid composition 486 2.2. Fatty acid composition 486 2.3. Lipid organization 487 3. Apolipoproteins 488 3.1. Classes and general properties 488 3.2. Gene organization 490 3.3. Primary sequences 491 3.4. Secondary structures 492 3.5. Three dimensional structures in solution 494 4. Complexes of apolipoproteins with lipids 496 4.1. Binding of apolipoproteins to phospholipid surfaces 496 4.2. Lipoprotein like complexes 498 4.3. Reconstituted HDL 499 4.4. Structures of native lipoproteins 501 5. Future directions 502 Abbreviations 503 References 503 Chapter 19. Assembly and secretion of lipoproteins Jean E. Vance 505 1. Overview of lipoprotein secretion into the circulation 505 2. Structural features of apolipoprotein B 507 3. Transcriptional regulation of apo B synthesis 509 3.1. DNA elements regulating apo B transcription 509 3.2. Apo B mRNA editing 510 4. Models used for studying apo B and VLDL secretion 511 5. Covalent modifications of apo B 512 6. Regulation of apo B secretion by lipid supply 513 6.1. Fatty acids and triacylglycerols 513 6.2. Phospholipids 514 6.3. Cholesterol and cholesteryl esters 515 6.4. Microsomal triacylglycerol transfer protein 516 6.4.1. MTP deficiency in humans and mice 516 6.4.2. Studies on the function of MTP in cultured cells 517 6.4.3. MTP gene expression 520 7. Translocation and intracellular degradation of apo B 520 7.1. Proteasomal degradation of apo B 520 7.2. Degradation of apo B within the secretory pathway 521 8. Assembly and secretion of chylomicrons 522 9. Assembly of lipoprotein(a) 523 10. Future directions 524 Abbreviations 524 References 525 Chapter 20. Dynamics of lipoprotein transport in the human circulatory system Phoebe E. Fielding and Christopher J. Fielding 527 1. Overview 527 1.1. Functions of the major lipoproteins 527 xxiv 1.2. Forward lipid transport 528 1.3. Reverse lipid transport 528 2. Lipoprotein triglyceride and lipolysis 529 2.1. Initial events 529 2.2. The structure and activation of lipoprotein lipase (LPL) 531 2.3. Transport of LPL to its endothelial site 533 2.4. Structure of the LPL substrate complex at the vascular surface 534 2.5. Kinetics of the LPL reaction and the role of albumin 535 2.6. Later metabolism of chylomicron and VLDL triacylglycerol 536 2.7. Congenital deficiencies of lipoprotein triacylglycerol metabolism 537 3. HDL and plasma cholesterol metabolism 537 3.1. The origin of HDL 537 3.2. Role of the ABCA1 transporter in HDL genesis 538 3.3. The role of caveolae in HDL genesis 539 3.4. The role of LCAT in HDL genesis 540 3.5. Regeneration of prebeta migrating HDL 541 3.6. Regulation of gene expression and structure of apo A1 542 3.7. Structure and properties of LCAT 544 3.8. Congenital deficiencies of LCAT and HDL 544 4. Reactions linking the metabolism of apo A1 and apo B lipoproteins 545 4.1. Metabolic implications 545 4.2. Phospholipid transfer protein (PLTP) 546 4.3. Cholesteryl ester transfer protein (CETP) 546 4.4. Scavenger receptor BI (SR BI) 547 4.5. Animal models of human plasma cholesterol metabolism 549 5. Summary and future directions 550 Abbreviations 550 Acknowledgements 551 References 551 Chapter 21. Lipoprotein receptors Wolfgang J. Schneider 553 1. Introduction 553 2. Removal of LDL from the circulation 555 2.1. Receptor mediated endocytosis 555 2.2. The LDL receptor pathway 557 2.3. Relationships between structure and function of the LDL receptor 558 2.3.1. The ligand binding domain 558 2.3.2. The epidermal growth factor precursor homology domain 559 2.3.3. The O linked sugar domain 559 2.3.4. The membrane anchoring domain 559 2.3.5. The cytoplasmic tail 559 2.4. The human LDL receptor gene — organization and naturally occurring mutations .... 559 2.4.1. Class I: null alleles — no detectable receptor 561 2.4.2. Class 2: slow or absent processing of the precursor 561 2.4.3. Class 3: defective ligand binding 561 2.4.4. Class 4: internalization defective 561 2.4.5. Class 5: recycling defective 561 3. Removal of triacylglycerol rich lipoproteins from the plasma 562 3.1. Catabolism of chylomicrons 562 3.2. The so called VLDL receptor: a role in catabolism of VLDL? 563 4. Multifunctional receptors in the chicken 563 XXV 5. VLDL receptor and apoE receptor type 2 (apoER2) as signal transducers 564 5.1. ApoER2 — a close relative of the VLDL receptor 564 5.2. Genetic models reveal new roles for apoER2 and VLDL receptor 565 6. Other relatives of the LDL receptor family 566 6.1. Small and mid sized LDL receptor relatives: LRP 3, 4, 5, and 6 566 6.2. The unusual one: LR11 567 6.3. Large LDL receptor relatives: megalin and LR32 567 6.3.1. Megalin, a true lipid transport receptor 567 6.3.2. LR32(LRP1B) 568 7. Scavenger receptors 568 7.1. ClassASRs 568 7.2. Lectin like oxidized LDL receptor (LOX) l 569 8. Future directions 569 Abbreviations 570 References 570 Chapter 22. Lipids and atherosclerosis IraTabas 573 1. Introduction 573 2. Cholesterol and atherosclerosis 576 2.1. Cholesterol deposition in the arterial wall 576 2.2. Cholesterol accumulation in lesional macrophages: lipoprotein internalization 577 2.3. Cholesterol accumulation in lesional macrophages: intracellular trafficking of lipoprotein derived cholesterol 578 2.4. Accumulation of free cholesterol in lesional macrophages 579 2.5. Cholesterol accumulation in lesional smooth muscle cells 581 2.6. The fate of foam cell cholesterol in atheromata 581 3. Oxysterols and atherosclerosis 582 3.1. Origins of oxysterols 582 3.2. Oxysterols in plasma, lipoproteins, and atherosclerotic lesions 583 3.3. Physiologic significance of oxysterols in atherosclerosis 583 4. Triglycerides and atherosclerosis 585 5. Fatty acids and atherosclerosis 586 5.1. Direct effects of fatty acids 586 5.2. Oxidation of long chain polyunsaturated fatty acids: introduction 586 5.3. Oxidative metabolites of arachidonic acid 586 5.4. Atherogenic and anti atherogenic effects of other long chain polyunsaturated acids . . . 588 6. Phospholipids and related lipids 589 6.1. Introduction 589 6.2. Oxidative modification of phosphatidylcholine in lesional lipoproteins 589 6.3. The phospholipids of lesional cells 592 6.4. Sphingomyelin and ceramide 593 6.5. Glycosphingolipids 594 7. Future directions 596 References 596 Index 599
any_adam_object 1
building Verbundindex
bvnumber BV015023213
callnumber-first Q - Science
callnumber-label QD415
callnumber-raw QD415
QP751
callnumber-search QD415
QP751
callnumber-sort QD 3415
callnumber-subject QD - Chemistry
classification_rvk WD 4000
ctrlnum (OCoLC)51001207
(DE-599)BVBBV015023213
dewey-full 572/.57
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 572 - Biochemistry
dewey-raw 572/.57
dewey-search 572/.57
dewey-sort 3572 257
dewey-tens 570 - Biology
discipline Biologie
edition 4. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03125nam a2200817zcb4500</leader><controlfield tag="001">BV015023213</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090323 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">021203s2002 ne ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002192786</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444511385</subfield><subfield code="9">0-444-51138-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444511393</subfield><subfield code="9">0-444-51139-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51001207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV015023213</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP751</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.57</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 4000</subfield><subfield code="0">(DE-625)148175:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biochemistry of lipids, lipoproteins, and membranes</subfield><subfield code="c">ed.: Dennis E. Vance and Jean E. Vance</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 607 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New comprehensive biochemistry</subfield><subfield code="v">36</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lipid Metabolism</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lipids</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lipoproteins</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cell Membranes</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biochemistry</subfield><subfield code="2">cabt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipides - Métabolisme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipoprotéines - Métabolisme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membranes lipidiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Membrane</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid membranes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipids</subfield><subfield code="x">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipoproteins</subfield><subfield code="x">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipoproteins</subfield><subfield code="x">metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lipoproteide</subfield><subfield code="0">(DE-588)4074259-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lipide</subfield><subfield code="0">(DE-588)4035873-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lipidmembran</subfield><subfield code="0">(DE-588)4167790-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Membranlipide</subfield><subfield code="0">(DE-588)4203814-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomembran</subfield><subfield code="0">(DE-588)4006884-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biochemie</subfield><subfield code="0">(DE-588)4006777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lipide</subfield><subfield code="0">(DE-588)4035873-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lipoproteide</subfield><subfield code="0">(DE-588)4074259-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Biomembran</subfield><subfield code="0">(DE-588)4006884-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Biochemie</subfield><subfield code="0">(DE-588)4006777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lipidmembran</subfield><subfield code="0">(DE-588)4167790-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Membranlipide</subfield><subfield code="0">(DE-588)4203814-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vance, Dennis E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vance, Jean E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New comprehensive biochemistry</subfield><subfield code="v">36</subfield><subfield code="w">(DE-604)BV000003914</subfield><subfield code="9">36</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=010091679&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010091679</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV015023213
illustrated Illustrated
indexdate 2025-02-03T17:14:18Z
institution BVB
isbn 0444511385
0444511393
language English
lccn 2002192786
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-010091679
oclc_num 51001207
open_access_boolean
owner DE-355
DE-BY-UBR
DE-703
DE-12
DE-19
DE-BY-UBM
DE-188
owner_facet DE-355
DE-BY-UBR
DE-703
DE-12
DE-19
DE-BY-UBM
DE-188
physical XXIX, 607 S. Ill., graph. Darst.
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Elsevier
record_format marc
series New comprehensive biochemistry
series2 New comprehensive biochemistry
spellingShingle Biochemistry of lipids, lipoproteins, and membranes
New comprehensive biochemistry
Lipid Metabolism cabt
Lipids cabt
Lipoproteins cabt
Cell Membranes cabt
Biochemistry cabt
Lipides - Métabolisme
Lipoprotéines - Métabolisme
Membranes lipidiques
Cell Membrane physiology
Lipid Metabolism
Lipid membranes
Lipids Metabolism
Lipoproteins Metabolism
Lipoproteins metabolism
Signal Transduction
Lipoproteide (DE-588)4074259-3 gnd
Lipide (DE-588)4035873-2 gnd
Lipidmembran (DE-588)4167790-0 gnd
Membranlipide (DE-588)4203814-5 gnd
Biomembran (DE-588)4006884-5 gnd
Biochemie (DE-588)4006777-4 gnd
subject_GND (DE-588)4074259-3
(DE-588)4035873-2
(DE-588)4167790-0
(DE-588)4203814-5
(DE-588)4006884-5
(DE-588)4006777-4
(DE-588)4143413-4
title Biochemistry of lipids, lipoproteins, and membranes
title_auth Biochemistry of lipids, lipoproteins, and membranes
title_exact_search Biochemistry of lipids, lipoproteins, and membranes
title_full Biochemistry of lipids, lipoproteins, and membranes ed.: Dennis E. Vance and Jean E. Vance
title_fullStr Biochemistry of lipids, lipoproteins, and membranes ed.: Dennis E. Vance and Jean E. Vance
title_full_unstemmed Biochemistry of lipids, lipoproteins, and membranes ed.: Dennis E. Vance and Jean E. Vance
title_short Biochemistry of lipids, lipoproteins, and membranes
title_sort biochemistry of lipids lipoproteins and membranes
topic Lipid Metabolism cabt
Lipids cabt
Lipoproteins cabt
Cell Membranes cabt
Biochemistry cabt
Lipides - Métabolisme
Lipoprotéines - Métabolisme
Membranes lipidiques
Cell Membrane physiology
Lipid Metabolism
Lipid membranes
Lipids Metabolism
Lipoproteins Metabolism
Lipoproteins metabolism
Signal Transduction
Lipoproteide (DE-588)4074259-3 gnd
Lipide (DE-588)4035873-2 gnd
Lipidmembran (DE-588)4167790-0 gnd
Membranlipide (DE-588)4203814-5 gnd
Biomembran (DE-588)4006884-5 gnd
Biochemie (DE-588)4006777-4 gnd
topic_facet Lipid Metabolism
Lipids
Lipoproteins
Cell Membranes
Biochemistry
Lipides - Métabolisme
Lipoprotéines - Métabolisme
Membranes lipidiques
Cell Membrane physiology
Lipid membranes
Lipids Metabolism
Lipoproteins Metabolism
Lipoproteins metabolism
Signal Transduction
Lipoproteide
Lipide
Lipidmembran
Membranlipide
Biomembran
Biochemie
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010091679&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000003914
work_keys_str_mv AT vancedennise biochemistryoflipidslipoproteinsandmembranes
AT vancejeane biochemistryoflipidslipoproteinsandmembranes