Generalized Poisson models and their applications in insurance and finance

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bening, Vladimir E. (VerfasserIn), Korolev, Viktor Ju (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Utrecht ; Boston ; Köln ; Tokyo VSP 2002
Schriftenreihe:Modern probability and statistics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV014729684
003 DE-604
005 20040712
007 t|
008 020909s2002 gw |||| 00||| eng d
016 7 |a 965060969  |2 DE-101 
020 |a 9067643661  |9 90-6764-366-1 
035 |a (OCoLC)50606059 
035 |a (DE-599)BVBBV014729684 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-91G 
050 0 |a HG8781 
084 |a MAT 902f  |2 stub 
084 |a MAT 603f  |2 stub 
100 1 |a Bening, Vladimir E.  |e Verfasser  |4 aut 
245 1 0 |a Generalized Poisson models and their applications in insurance and finance  |c Vladimir E. Bening and Victor Yu. Korolev 
264 1 |a Utrecht ; Boston ; Köln ; Tokyo  |b VSP  |c 2002 
300 |a XIX, 434 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Modern probability and statistics 
500 |a Literaturverz. S. 415 - 429 
650 7 |a Bedrijfsfinanciering  |2 gtt 
650 7 |a Stochastische processen  |2 gtt 
650 7 |a Verzekeringswezen  |2 gtt 
650 4 |a Mathematisches Modell 
650 4 |a Finance  |x Mathematical models 
650 4 |a Insurance  |x Mathematical models 
650 4 |a Poisson distribution 
650 4 |a Poisson processes 
650 0 7 |a Poisson-Prozess  |0 (DE-588)4174971-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Versicherungsmathematik  |0 (DE-588)4063194-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Finanzmathematik  |0 (DE-588)4017195-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Poisson-Prozess  |0 (DE-588)4174971-6  |D s 
689 0 1 |a Versicherungsmathematik  |0 (DE-588)4063194-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Poisson-Prozess  |0 (DE-588)4174971-6  |D s 
689 1 1 |a Finanzmathematik  |0 (DE-588)4017195-4  |D s 
689 1 |5 DE-604 
700 1 |a Korolev, Viktor Ju.  |e Verfasser  |0 (DE-588)124630936  |4 aut 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009981972&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009981972 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 605f 2001 A 7315
DE-BY-TUM_katkey 1471672
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020083781
_version_ 1820890406627311616
adam_text MODERN PROBABILITY AND STATISTICS GENERALIZED POISSON MODELS AND THEIR APPLICATIONS IN INSURANCE AND FINANCE VLADIMIR E. BENINGAND VICTOR YU. KOROLEV MOSCOW STATE UNIVERSITY ///VSP/// UTRECHT * BOSTON * KOLN * TOKYO, 2002 CONTENTS FOREWORD IX PREFACE XIII 1 BASIC NOTIONS OF PROBABILITY THEORY 1 1.1 RANDOM VARIABLES, THEIR DISTRIBUTIONS AND MOMENTS 1 1.2 GENERATING AND CHARACTERISTIC FUNCTIONS 11 1.3 RANDOM VECTORS. STOCHASTIC INDEPENDENCE 21 1.4 WEAK CONVERGENCE OF RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS ... 24 1.5 POISSON THEOREM 30 1.6 LAW OF LARGE NUMBERS. CENTRAL LIMIT THEOREM. STABLE LAWS 35 1.7 THE BERRY*ESSEEN INEQUALITY 45 1.8 ASYMPTOTIC EXPANSIONS IN THE CENTRAL LIMIT THEOREM 47 1.9 ELEMENTARY PROPERTIES OF RANDOM SUMS 56 1.10 STOCHASTIC PROCESSES 62 2 POISSON PROCESS 69 2.1 THE DEFINITION AND ELEMENTARY PROPERTIES OF A POISSON PROCESS 69 2.2 POISSON PROCESS AS A MODEL OF CHAOTIC DISPLACEMENT OF POINTS IN TIME . . 72 2.3 THE ASYMPTOTIC NORMALITY OF A POISSON PROCESS 74 2.4 ELEMENTARY RAREFACTION OF RENEWAL PROCESSES 76 3 CONVERGENCE OF SUPERPOSITIONS OF INDEPENDENT STOCHASTIC PROCESSES 83 3.1 CHARACTERISTIC FEATURES OF THE PROBLEM 83 3.2 APPROXIMATION OF DISTRIBUTIONS OF RANDOMLY INDEXED RANDOM SEQUENCES BY SPECIAL MIXTURES 85 3.3 THE TRANSFER THEOREM. RELATIONS BETWEEN THE LIMIT LAWS FOR RANDOM SEQUENCES WITH RANDOM AND NON-RANDOM INDICES 89 3.4 NECESSARY AND SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF DISTRIBUTIONS OF RANDOM SEQUENCES WITH INDEPENDENT RANDOM INDICES 91 3.5 CONVERGENCE OF DISTRIBUTIONS OF RANDOMLY INDEXED SEQUENCES TO IDENTI- FIABLE LOCATION OR SCALE MIXTURES. THE ASYMPTOTIC BEHAVIOR OF EXTREMAL RANDOM SUMS 98 3.6 CONVERGENCE OF DISTRIBUTIONS OF RANDOM SUMS. THE CENTRAL LIMIT THEOREM AND THE LAW OF LARGE NUMBERS FOR RANDOM SUMS 105 3.7 A GENERAL THEOREM ON THE ASYMPTOTIC BEHAVIOR OF SUPERPOSITIONS OF IN- DEPENDENT STOCHASTIC PROCESSES 115 3.8 THE TRANSFER THEOREM FOR RANDOM SUMS OF INDEPENDENT IDENTICALLY DIS- TRIBUTED RANDOM VARIABLES IN THE DOUBLE ARRAY LIMIT SCHEME 117 COMPOUND POISSON DISTRIBUTIONS 123 4.1 MIXED AND COMPOUND POISSON DISTRIBUTIONS 123 4.2 DISCRETE COMPOUND POISSON DISTRIBUTIONS 129 4.3 THE ASYMPTOTIC NORMALITY OF COMPOUND POISSON DISTRIBUTIONS. THE BERRY-ESSEEN INEQUALITY FOR POISSON RANDOM SUMS. NON-CENTRAL LYA- PUNOV FRACTIONS 133 4.4 ASYMPTOTIC EXPANSIONS FOR COMPOUND POISSON DISTRIBUTIONS 139 4.5 THE ASYMPTOTIC EXPANSIONS FOR THE QUANTILES OF COMPOUND POISSON DIS- TRIBUTIONS 151 4.6 EXPONENTIAL INEQUALITIES FOR THE PROBABILITIES OF LARGE DEVIATIONS OF POIS- SON RANDOM SUMS. AN ANALOG OF BERNSHTEIN-KOLMOGOROV INEQUALITY . . 155 4.7 THE APPLICATION OF ESSCHER TRANSFORMS TO THE APPROXIMATION OF THE TAILS OF COMPOUND POISSON DISTRIBUTIONS 157 4.8 ESTIMATES OF CONVERGENCE RATE IN LOCAL LIMIT THEOREMS FOR POISSON RANDOM SUMS 166 CLASSICAL RISK PROCESSES 181 5.1 THE DEFINITION OF THE CLASSICAL RISK PROCESS. ITS ASYMPTOTIC NORMALITY . . 181 5.2 THE POLLACZEK-KHINCHIN*BEEKMAN FORMULA FOR THE RUIN PROBABILITY IN THE CLASSICAL RISK PROCESS 185 5.3 APPROXIMATIONS FOR THE RUIN PROBABILITY WITH SMALL SAFETY LOADING . . . 189 5.4 ASYMPTOTIC EXPANSIONS FORTHE RUIN PROBABILITY WITH SMALL SAFETY LOADING 191 5.5 APPROXIMATIONS FOR THE RUIN PROBABILITY 203 5.6 ASYMPTOTIC APPROXIMATIONS FOR THE DISTRIBUTION OF THE SURPLUS IN GENERAL RISK PROCESSES 213 5.7 A PROBLEM OF INVENTORY CONTROL 221 5.8 ANON-CLASSICAL PROBLEM OF OPTIMIZATION OF THE INITIAL CAPITAL 227 DOUBLY STOCHASTIC POISSON PROCESSES (COX PROCESSES) 233 6.1 THE ASYMPTOTIC BEHAVIOR OF RANDOM SUMS OF RANDOM INDICATORS 233 6.2 MIXED POISSON PROCESSES 238 6.3 THE MODIFIED POLLACZEK-KHINCHIN-BEEKMAN FORMULA 249 6.4 THE DEFINITION AND ELEMENTARY PROPERTIES OF DOUBLY STOCHASTIC POISSON PROCESSES 252 6.5 THE ASYMPTOTIC BEHAVIOR OF COX PROCESSES 256 COMPOUND COX PROCESSES WITH ZERO MEAN 265 7.1 DEFINITION. EXAMPLES 265 7.2 CONDITIONS OF CONVERGENCE OF THE DISTRIBUTIONS OF COMPOUND COX PROCESS- ES WITH ZERO MEAN. LIMIT LAWS 266 7.3 CONVERGENCE RATE ESTIMATES 269 7.4 ASYMPTOTIC EXPANSIONS FOR THE DISTRIBUTIONS OF COMPOUND COX PROCESSES WITH ZERO MEAN 273 7.5 ASYMPTOTIC EXPANSIONS FOR THE QUANTILES OF COMPOUND COX PROCESSES WITH ZERO MEAN 281 7.6 EXPONENTIAL INEQUALITIES FOR THE PROBABILITIES OF LARGE DEVIATIONS OF COM- POUND COX PROCESSES WITH ZERO MEAN 283 VI 7.7 LIMIT THEOREMS FOR EXTREMA OF COMPOUND COX PROCESSES WITH ZERO MEAN 285 7.8 ESTIMATES OF THE RATE OF CONVERGENCE OF EXTREMA OF COMPOUND COX PRO- CESSES WITH ZERO MEAN 287 8 MODELING EVOLUTION OF STOCK PRICES BY COMPOUND COX PROCESSES 291 8.1 INTRODUCTION 291 8.2 NORMAL AND STABLE MODELS 292 8.3 HETEROGENEITY OF OPERATIONAL TIME AND NORMAL MIXTURES 294 8.4 INHOMOGENEOUS DISCRETE CHAOS AND COX PROCESSES 297 8.5 RESTRICTION OF THE CLASS OF MIXING DISTRIBUTIONS 303 8.6 HEAVY-TAILEDNESS OF SCALE MIXTURES OF NORMALS 307 8.7 THE CASE OF ELEMENTARY INCREMENTS WITH NON-ZERO MEANS 308 8.8 MODELS WITHIN THE DOUBLE ARRAY LIMIT SCHEME * . . . 310 8.9 QUANTILES OF THE DISTRIBUTIONS OF STOCK PRICES 313 9 COMPOUND COX PROCESSES WITH NONZERO MEAN 317 9.1 DEFINITION. EXAMPLES 317 9.2 CONDITIONS OF CONVERGENCE OF COMPOUND COX PROCESSES WITH NONZERO MEAN. LIMIT LAWS 318 9.3 CONVERGENCE RATE ESTIMATES FOR COMPOUND COX PROCESSES WITH NONZERO MEAN 322 9.4 ASYMPTOTIC EXPANSIONS FOR THE DISTRIBUTIONS OF COMPOUND COX PROCESSES WITH NONZERO MEAN 326 9.5 ASYMPTOTIC EXPANSIONS FOR THE QUANTILES OF COMPOUND COX PROCESSES WITH NONZERO MEAN 338 9.6 EXPONENTIAL INEQUALITIES FOR THE NEGATIVE VALUES OF THE SURPLUS IN COLLEC- TIVE RISK MODELS WITH STOCHASTIC INTENSITY OF INSURANCE PAYMENTS .... 339 9.7 LIMIT THEOREMS FOR EXTREMA OF COMPOUND COX PROCESSES WITH NONZERO MEAN 342 9.8 CONVERGENCE RATE ESTIMATES FOR EXTREMA OF COMPOUND COX PROCESSES WITH NONZERO MEAN 347 9.9 MINIMUM ADMISSIBLE RESERVE OF AN INSURANCE COMPANY WITH STOCHASTIC INTENSITY OF INSURANCE PAYMENTS 350 9.10 OPTIMIZATION OF THE INITIAL CAPITAL OF AN INSURANCE COMPANY IN A STATIC INSURANCE MODEL WITH RANDOM PORTFOLIO SIZE 351 10 FUNCTIONAL LIMIT THEOREMS FOR COMPOUND COX PROCESSES 357 10.1 FUNCTIONAL LIMIT THEOREMS FOR NON-CENTERED COMPOUND COX PROCESSES . . 357 10.2 FUNCTIONAL LIMIT THEOREMS FOR NONRANDOMLY CENTERED COMPOUND COX PRO- CESSES 363 11 GENERALIZED RISK PROCESSES 373 . 11.1 THE DEFINITION OF GENERALIZED RISK PROCESSES 373 11.2 CONDITIONS OF CONVERGENCE OF THE DISTRIBUTIONS OF GENERALIZED RISK PRO- CESSES . 375 11.3 CONVERGENCE RATE ESTIMATES FOR GENERALIZED RISK PROCESSES 378 11.4 ASYMPTOTIC EXPANSIONS FOR THE DISTRIBUTIONS OF GENERALIZED RISK PROCESSES 381 11.5 ASYMPTOTIC EXPANSIONS FOR THE QUANTILES OF GENERALIZED RISK PROCESSES . 384 11.6 EXPONENTIAL INEQUALITIES FOR THE PROBABILITIES OF NEGATIVE VALUES OF GEN- ERALIZED RISK PROCESSES 386 VLL 12 STATISTICAL INFERENCE CONCERNING THE PARAMETERS OF RISK PROCESSES 391 12.1 STATISTICAL ESTIMATION OF THE RUIN PROBABILITY IN CLASSICAL RISK PROCESSES 391 12.2 SPECIFIC FEATURES OF STATISTICAL ESTIMATION OF RUIN PROBABILITY FOR GENERAL- IZED RISK PROCESSES 395 12.3 A NONPARAMETRIC ESTIMATOR OF THE RUIN PROBABILITY FOR A GENERALIZED RISK PROCESS 398 12.4 INTERVAL ESTIMATOR OF THE RUIN PROBABILITY FOR A GENERALIZED RISK PROCESS 404 12.5 COMPUTATIONAL ASPECTS OF THE CONSTRUCTION OF CONFIDENCE INTERVALS FOR THE RUIN PROBABILITY IN GENERALIZED RISK PROCESSES 412 BIBLIOGRAPHY 415 INDEX 431 VM
any_adam_object 1
author Bening, Vladimir E.
Korolev, Viktor Ju
author_GND (DE-588)124630936
author_facet Bening, Vladimir E.
Korolev, Viktor Ju
author_role aut
aut
author_sort Bening, Vladimir E.
author_variant v e b ve veb
v j k vj vjk
building Verbundindex
bvnumber BV014729684
callnumber-first H - Social Science
callnumber-label HG8781
callnumber-raw HG8781
callnumber-search HG8781
callnumber-sort HG 48781
callnumber-subject HG - Finance
classification_tum MAT 902f
MAT 603f
ctrlnum (OCoLC)50606059
(DE-599)BVBBV014729684
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02133nam a2200565 c 4500</leader><controlfield tag="001">BV014729684</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040712 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020909s2002 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">965060969</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9067643661</subfield><subfield code="9">90-6764-366-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)50606059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014729684</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HG8781</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 902f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 603f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bening, Vladimir E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Poisson models and their applications in insurance and finance</subfield><subfield code="c">Vladimir E. Bening and Victor Yu. Korolev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Utrecht ; Boston ; Köln ; Tokyo</subfield><subfield code="b">VSP</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 434 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern probability and statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 415 - 429</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bedrijfsfinanciering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische processen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Verzekeringswezen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insurance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poisson-Prozess</subfield><subfield code="0">(DE-588)4174971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Versicherungsmathematik</subfield><subfield code="0">(DE-588)4063194-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Poisson-Prozess</subfield><subfield code="0">(DE-588)4174971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Versicherungsmathematik</subfield><subfield code="0">(DE-588)4063194-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Poisson-Prozess</subfield><subfield code="0">(DE-588)4174971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korolev, Viktor Ju.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124630936</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009981972&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009981972</subfield></datafield></record></collection>
id DE-604.BV014729684
illustrated Not Illustrated
indexdate 2024-12-23T15:59:46Z
institution BVB
isbn 9067643661
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009981972
oclc_num 50606059
open_access_boolean
owner DE-91G
DE-BY-TUM
owner_facet DE-91G
DE-BY-TUM
physical XIX, 434 S.
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher VSP
record_format marc
series2 Modern probability and statistics
spellingShingle Bening, Vladimir E.
Korolev, Viktor Ju
Generalized Poisson models and their applications in insurance and finance
Bedrijfsfinanciering gtt
Stochastische processen gtt
Verzekeringswezen gtt
Mathematisches Modell
Finance Mathematical models
Insurance Mathematical models
Poisson distribution
Poisson processes
Poisson-Prozess (DE-588)4174971-6 gnd
Versicherungsmathematik (DE-588)4063194-1 gnd
Finanzmathematik (DE-588)4017195-4 gnd
subject_GND (DE-588)4174971-6
(DE-588)4063194-1
(DE-588)4017195-4
title Generalized Poisson models and their applications in insurance and finance
title_auth Generalized Poisson models and their applications in insurance and finance
title_exact_search Generalized Poisson models and their applications in insurance and finance
title_full Generalized Poisson models and their applications in insurance and finance Vladimir E. Bening and Victor Yu. Korolev
title_fullStr Generalized Poisson models and their applications in insurance and finance Vladimir E. Bening and Victor Yu. Korolev
title_full_unstemmed Generalized Poisson models and their applications in insurance and finance Vladimir E. Bening and Victor Yu. Korolev
title_short Generalized Poisson models and their applications in insurance and finance
title_sort generalized poisson models and their applications in insurance and finance
topic Bedrijfsfinanciering gtt
Stochastische processen gtt
Verzekeringswezen gtt
Mathematisches Modell
Finance Mathematical models
Insurance Mathematical models
Poisson distribution
Poisson processes
Poisson-Prozess (DE-588)4174971-6 gnd
Versicherungsmathematik (DE-588)4063194-1 gnd
Finanzmathematik (DE-588)4017195-4 gnd
topic_facet Bedrijfsfinanciering
Stochastische processen
Verzekeringswezen
Mathematisches Modell
Finance Mathematical models
Insurance Mathematical models
Poisson distribution
Poisson processes
Poisson-Prozess
Versicherungsmathematik
Finanzmathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009981972&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT beningvladimire generalizedpoissonmodelsandtheirapplicationsininsuranceandfinance
AT korolevviktorju generalizedpoissonmodelsandtheirapplicationsininsuranceandfinance