Linear water waves a mathematical approach

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuznecov, Nikolaj G. (VerfasserIn), Mazʹja, Vladimir Gilelevič 1937- (VerfasserIn), Vajnberg, Boris R. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2002
Ausgabe:1. publ.
Schlagworte:
Online-Zugang:Publisher description
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV014682576
003 DE-604
005 20100105
007 t|
008 020828s2002 xxud||| |||| 00||| eng d
010 |a 2001052968 
020 |a 0521808537  |9 0-521-80853-7 
035 |a (OCoLC)48449598 
035 |a (DE-599)BVBBV014682576 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-703  |a DE-91G  |a DE-634  |a DE-384  |a DE-11 
050 0 |a QA927 
082 0 |a 532/.593  |2 21 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a UF 5000  |0 (DE-625)145595:  |2 rvk 
084 |a PHY 226f  |2 stub 
100 1 |a Kuznecov, Nikolaj G.  |e Verfasser  |4 aut 
245 1 0 |a Linear water waves  |b a mathematical approach  |c N. Kuznetsov ; V. Mazya ; B. Vainberg 
250 |a 1. publ. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2002 
300 |a XVII, 513 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Mouvement ondulatoire, Théorie du 
650 4 |a Vagues - Mathématiques 
650 4 |a Mathematik 
650 4 |a Water waves  |x Mathematics 
650 4 |a Wave-motion, Theory of 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Wasserwelle  |0 (DE-588)4136091-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Wasserwelle  |0 (DE-588)4136091-6  |D s 
689 0 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 0 |5 DE-604 
700 1 |a Mazʹja, Vladimir Gilelevič  |d 1937-  |e Verfasser  |0 (DE-588)121490602  |4 aut 
700 1 |a Vajnberg, Boris R.  |e Verfasser  |4 aut 
856 4 |u http://www.loc.gov/catdir/description/cam022/2001052968.html  |3 Publisher description 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009959039&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009959039 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 PHY 226f 2003 A 49
DE-BY-TUM_katkey 1371569
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020711500
_version_ 1820881367656824832
adam_text LINEAR WATER WAVES A MATHEMATICAL APPROACH N. KUZNETSOV RUSSIAN ACADEMY OF SCIENCES, ST. PETERSBURG V. MAZ YA UNIVERSITY OF LINKB PING, SWEDEN B. VAINBERG UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE PAGE XI INTRODUCTION: BASIC THEORY OF SURFACE WAVES 1 MATHEMATICAL FORMULATION 1 LINEARIZED UNSTEADY PROBLEM 5 LINEAR TIME-HARMONIC WAVES (THE WATER-WAVE PROBLEM) 10 LINEAR SHIP WAVES ON CALM WATER (THE NEUMANN-KELVIN PROBLEM) 15 1. TIME-HARMONIC WAVES 19 1. GREEN S FUNCTIONS 21 1.1. THREE-DIMENSIONAL PROBLEMS OF POINT SOURCES 21 1.2. TWO-DIMENSIONAL AND RING GREEN S FUNCTIONS 37 1.3. GREEN S REPRESENTATION OF A VELOCITY POTENTIAL 42 1.4. BIBLIOGRAPHICAL NOTES 48 2. SUBMERGED OBSTACLES 50 2.1. METHOD OF INTEGRAL EQUATIONS^AND KOCHIN S THEOREM 50 2.2. CONDITIONS OF UNIQUENESS FOR ALL FREQUENCIES 67 2.3. UNIQUE SOLVABILITY THEOREMS 87 2.4. BIBLIOGRAPHICAL NOTES 96 3. SEMISUBMERGED BODIES, I 99 3.1. INTEGRAL EQUATIONS FOR SURFACE-PIERCING BODIES 99 3.2. JOHN S THEOREM ON THE UNIQUE SOLVABILITY AND OTHER RELATED THEOREMS 116 3.3. BIBLIOGRAPHICAL NOTES 140 4. SEMISUBMERGED BODIES, II 142 4.1. TRAPPED WAVES 143 VN VIII CONTENTS 4.2. UNIQUENESS THEOREMS 164 4.3. BIBLIOGRAPHICAL NOTES 212 5. HORIZONTALLY PERIODIC TRAPPED WAVES 214 5.1. TWO TYPES OF TRAPPED MODES 215 5.2. EDGE WAVES 219 5.3. TRAPPED MODES ABOVE SUBMERGED OBSTACLES 229 5.4. WAVES IN THE PRESENCE OF SURFACE-PIERCING STRUCTURES 237 5.5. VERTICAL CYLINDERS IN CHANNELS 254 2. SHIP WAVES ON CALM WATER 263 6. GREEN S FUNCTIONS 265 6.1. THREE-DIMENSIONAL PROBLEM OF A POINT SOURCE IN DEEP WATER 265 6.2. FAR-FIELD BEHAVIOR OF THE THREE-DIMENSIONAL GREEN S FUNCTION 283 6.3. TWO-DIMENSIONAL PROBLEMS OF LINE SOURCES 305 6.4. BIBLIOGRAPHICAL NOTES 315 7. THE NEUMANN-KELVIN PROBLEM FOR A SUBMERGED BODY 318 7.1. CYLINDER IN DEEP WATER 319 7.2. CYLINDER IN SHALLOW WATER 341 7.3. WAVE RESISTANCE 349 7.4. THREE-DIMENSIONAL BODY IN DEEP WATER 353 7.5. BIBLIOGRAPHICAL NOTES 359 8. TWO-DIMENSIONAL PROBLEM FOR A SURFACE-PIERCING BODY 361 8.1. GENERAL LINEAR SUPPLEMENTARY CONDITIONS AT THE BOW AND STERN POINTS 362 8.2. TOTAL RESISTANCE TO THE FORWARD MOTION 393 8.3. OTHER SUPPLEMENTARY CONDITIONS 396 8.4. TRAPPED MODES 405 8.5. CYLINDER IN THE SUPERCRITICAL STREAM 411 8.6. BIBLIOGRAPHICAL NOTES 415 3. UNSTEADY WAVES 419 9. SUBMERGED OBSTACLES: EXISTENCE AND PROPERTIES OF VELOCITY POTENTIALS 421 9.1. THE INITIAL-BOUNDARY VALUE PROBLEM AND AN AUXILIARY STEADY-STATE PROBLEM 421 9.2. OPERATOR EQUATION FOR THE UNSTEADY PROBLEM 425 9.3. MAIN RESULTS 427 9.4. BIBLIOGRAPHICAL NOTES 432 CONTENTS IX 10. WAVES CAUSED BY RAPIDLY STABILIZING AND HIGH-FREQUENCY DISTURBANCES 435 10.1. RAPIDLY STABILIZING SURFACE DISTURBANCES 435 10.2. RAPIDLY STABILIZING UNDERWATER DISTURBANCES 453 10.3. HIGH-FREQUENCY SURFACE PRESSURE 460 10.4. HIGH-FREQUENCY UNDERWATER DISTURBANCES 474 10.5. BIBLIOGRAPHICAL NOTES 484 BIBLIOGRAPHY 485 NAME INDEX 505 SUBJECT INDEX 509
any_adam_object 1
author Kuznecov, Nikolaj G.
Mazʹja, Vladimir Gilelevič 1937-
Vajnberg, Boris R.
author_GND (DE-588)121490602
author_facet Kuznecov, Nikolaj G.
Mazʹja, Vladimir Gilelevič 1937-
Vajnberg, Boris R.
author_role aut
aut
aut
author_sort Kuznecov, Nikolaj G.
author_variant n g k ng ngk
v g m vg vgm
b r v br brv
building Verbundindex
bvnumber BV014682576
callnumber-first Q - Science
callnumber-label QA927
callnumber-raw QA927
callnumber-search QA927
callnumber-sort QA 3927
callnumber-subject QA - Mathematics
classification_rvk SK 950
UF 5000
classification_tum PHY 226f
ctrlnum (OCoLC)48449598
(DE-599)BVBBV014682576
dewey-full 532/.593
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 532 - Fluid mechanics
dewey-raw 532/.593
dewey-search 532/.593
dewey-sort 3532 3593
dewey-tens 530 - Physics
discipline Physik
Mathematik
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01986nam a2200517zc 4500</leader><controlfield tag="001">BV014682576</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100105 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020828s2002 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2001052968</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521808537</subfield><subfield code="9">0-521-80853-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)48449598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014682576</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA927</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.593</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 226f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuznecov, Nikolaj G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear water waves</subfield><subfield code="b">a mathematical approach</subfield><subfield code="c">N. Kuznetsov ; V. Mazya ; B. Vainberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 513 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mouvement ondulatoire, Théorie du</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vagues - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water waves</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave-motion, Theory of</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserwelle</subfield><subfield code="0">(DE-588)4136091-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasserwelle</subfield><subfield code="0">(DE-588)4136091-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazʹja, Vladimir Gilelevič</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121490602</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vajnberg, Boris R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/description/cam022/2001052968.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009959039&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009959039</subfield></datafield></record></collection>
id DE-604.BV014682576
illustrated Illustrated
indexdate 2024-12-23T15:59:08Z
institution BVB
isbn 0521808537
language English
lccn 2001052968
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009959039
oclc_num 48449598
open_access_boolean
owner DE-703
DE-91G
DE-BY-TUM
DE-634
DE-384
DE-11
owner_facet DE-703
DE-91G
DE-BY-TUM
DE-634
DE-384
DE-11
physical XVII, 513 S. graph. Darst.
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Cambridge Univ. Press
record_format marc
spellingShingle Kuznecov, Nikolaj G.
Mazʹja, Vladimir Gilelevič 1937-
Vajnberg, Boris R.
Linear water waves a mathematical approach
Mouvement ondulatoire, Théorie du
Vagues - Mathématiques
Mathematik
Water waves Mathematics
Wave-motion, Theory of
Mathematisches Modell (DE-588)4114528-8 gnd
Wasserwelle (DE-588)4136091-6 gnd
subject_GND (DE-588)4114528-8
(DE-588)4136091-6
title Linear water waves a mathematical approach
title_auth Linear water waves a mathematical approach
title_exact_search Linear water waves a mathematical approach
title_full Linear water waves a mathematical approach N. Kuznetsov ; V. Mazya ; B. Vainberg
title_fullStr Linear water waves a mathematical approach N. Kuznetsov ; V. Mazya ; B. Vainberg
title_full_unstemmed Linear water waves a mathematical approach N. Kuznetsov ; V. Mazya ; B. Vainberg
title_short Linear water waves
title_sort linear water waves a mathematical approach
title_sub a mathematical approach
topic Mouvement ondulatoire, Théorie du
Vagues - Mathématiques
Mathematik
Water waves Mathematics
Wave-motion, Theory of
Mathematisches Modell (DE-588)4114528-8 gnd
Wasserwelle (DE-588)4136091-6 gnd
topic_facet Mouvement ondulatoire, Théorie du
Vagues - Mathématiques
Mathematik
Water waves Mathematics
Wave-motion, Theory of
Mathematisches Modell
Wasserwelle
url http://www.loc.gov/catdir/description/cam022/2001052968.html
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009959039&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT kuznecovnikolajg linearwaterwavesamathematicalapproach
AT mazʹjavladimirgilelevic linearwaterwavesamathematicalapproach
AT vajnbergborisr linearwaterwavesamathematicalapproach