Solitons an introduction

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drazin, Philip G. 1934-2002 (VerfasserIn), Johnson, R. S. 1944- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 1996
Ausgabe:Reprinted
Schriftenreihe:Cambridge texts in applied mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV014278004
003 DE-604
005 20150512
007 t|
008 020502s1996 xx d||| |||| 00||| eng d
020 |a 052133389X  |9 0-521-33389-X 
020 |a 0521336554  |9 0-521-33655-4 
035 |a (OCoLC)257004507 
035 |a (DE-599)BVBBV014278004 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-355  |a DE-20 
082 0 |a 515.355 
084 |a UP 3700  |0 (DE-625)146387:  |2 rvk 
100 1 |a Drazin, Philip G.  |d 1934-2002  |e Verfasser  |0 (DE-588)128929146  |4 aut 
245 1 0 |a Solitons  |b an introduction  |c P. G. Drazin ; R. S. Johnson 
250 |a Reprinted 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 1996 
300 |a XII, 226 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Cambridge texts in applied mathematics 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Soliton  |0 (DE-588)4135213-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Gleichung  |0 (DE-588)4001162-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Störungstheorie  |0 (DE-588)4128420-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Approximationsalgorithmus  |0 (DE-588)4500954-5  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Soliton  |0 (DE-588)4135213-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Approximationsalgorithmus  |0 (DE-588)4500954-5  |D s 
689 1 1 |a Algebraische Gleichung  |0 (DE-588)4001162-8  |D s 
689 1 2 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 1 |5 DE-604 
689 2 0 |a Störungstheorie  |0 (DE-588)4128420-3  |D s 
689 2 |5 DE-604 
700 1 |a Johnson, R. S.  |d 1944-  |e Verfasser  |0 (DE-588)122078942  |4 aut 
856 4 2 |m HEBIS Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009791412&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009791412 

Datensatz im Suchindex

_version_ 1819575916738641920
adam_text Contents Preface page xi 1 The Korteweg-de Vries equation 1 1 1 Preliminaries 1 1 2 The discovery of solitary waves 7 1 3 The discovery of soliton interactions 12 1 4 Applications of the KdV equation 15 Further reading 16 Exercises 17 2 Elementary solutions of the Korteweg-de Vries equation 20 2 1 Travelling-wave solutions 20 2 2 Solitary waves 21 2 3 General waves of permanent form 22 2 4 Description in terms of elliptic functions 26 2 5 Limiting behaviours of the cnoidal wave 29 2 6 Other solutions of the KdV equation 30 Further reading 32 Exercises 33 3 The scattering and inverse scattering problems 39 3 1 Preamble 39 3 2 The scattering problem 40 Example (i): the delta function 44 Example (ii): the sech2 function 45 3 3 The inverse scattering problem 48 3 4 The solution of the Marchenko equation 56 Example (i): reflection coefficient with one pole 57 Example (ii): zero reflection coefficient 58 Further reading 60 Exercises 61 Contents viii 4 The initial-value problem for the Korteweg-de Vries equation 64 4 1 Recapitulation 64 4 2 Inverse scattering and the KdV equation 65 4 3 Time evolution of the scattering data 67 431 Discrete spectrum 68 432 Continuous spectrum 70 4 4 Construction of the solution: summary 71 4 5 Reflectionless potentials 72 Example (i): solitary wave 73 Example (ii): two-soliton solution 74 Example (iii): /V-soliton solution 78 4 6 Description of the solution when b{k) # 0 81 Example (i): delta-function initial profile 81 Example (ii): a negative sech2 initial profile 83 Example (iii): a positive sech2 initial profile 83 Further reading 86 Exercises 86 5 Further properties of the Korteweg-de Vries equation 89 5 1 Conservation laws 89 511 Introduction 89 512 An infinity of conservation laws 92 513 Of Lagrangians and Hamiltonians 95 5 2 Lax formulation and its KdV hierarchy 97 521 Description of the method: operators 97 522 The Lax KdV hierarchy 99 5 3 Hirota’s method: the bilinear form 102 531 The bilinear operator 103 532 The solution of the bilinear equation 106 5 4 Bäcklund transformations 109 541 Introductory ideas 110 542 Bäcklund transformation for the KdV equation 112 543 The KdV Bäcklund transformation: an algebraic relation 114 544 Bäcklund transformations and the bilinear form 116 Further reading 118 Exercises 118 6 More general inverse methods 127 6 1 The AKNS scheme 128 611 The 2x2 eigenvalue problem 128 Contents ix 612 The inverse scattering problem 131 613 An example: r = — q, q=/ sech Xx 134 614 Time evolution of the scattering data 137 615 The evolution equations for q and r 140 (a) Quadratic in ( 141 (b) Polynomial in (“1 142 (c) General function of ( 143 6 2 The ZS scheme 144 621 The integral operators 144 622 The differential operators 146 623 Scalar operators 149 (a) The KdV equation 149 (b) The two-dimensional KdV equation 151 624 Matrix operators 152 (a) The nonlinear Schrödinger equation 152 (b) The sine-Gordon equation 154 6 3 Two examples 157 Example (i): The nonlinear Schrödinger equation 157 Example (ii): The sine-Gordon equation 160 Further reading 162 Exercises 162 7 The Painleve property, perturbations and numerical methods 169 7 1 The Painleve property 169 711 Painleve equations 169 712 The Painleve conjecture 171 713 Linearisation of the Painleve equations 172 7 2 Perturbation theory 174 721 Perturbation theory: an example 177 7 3 Numerical methods 180 731 Spectral methods 182 732 Finite-difference methods 183 733 Long-wave equations 184 734 Nonlinear Klein-Gordon equations 186 735 The nonlinear Schrödinger equation 187 Further reading 187 Exercises 187 8 Epilogue 190 8 1 Some numerical solutions of nonlinear evolution equations 190 X Contents 8 2 Applications of nonlinear evolution equations 196 Further reading 200 Exercises 201 Answers and hints 205 Bibliography and author index 213 Motion picture index 220
any_adam_object 1
author Drazin, Philip G. 1934-2002
Johnson, R. S. 1944-
author_GND (DE-588)128929146
(DE-588)122078942
author_facet Drazin, Philip G. 1934-2002
Johnson, R. S. 1944-
author_role aut
aut
author_sort Drazin, Philip G. 1934-2002
author_variant p g d pg pgd
r s j rs rsj
building Verbundindex
bvnumber BV014278004
classification_rvk UP 3700
ctrlnum (OCoLC)257004507
(DE-599)BVBBV014278004
dewey-full 515.355
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.355
dewey-search 515.355
dewey-sort 3515.355
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
edition Reprinted
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02159nam a2200517 c 4500</leader><controlfield tag="001">BV014278004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150512 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020502s1996 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">052133389X</subfield><subfield code="9">0-521-33389-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521336554</subfield><subfield code="9">0-521-33655-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)257004507</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014278004</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3700</subfield><subfield code="0">(DE-625)146387:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Drazin, Philip G.</subfield><subfield code="d">1934-2002</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128929146</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons</subfield><subfield code="b">an introduction</subfield><subfield code="c">P. G. Drazin ; R. S. Johnson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprinted</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 226 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in applied mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Gleichung</subfield><subfield code="0">(DE-588)4001162-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebraische Gleichung</subfield><subfield code="0">(DE-588)4001162-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, R. S.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122078942</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009791412&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009791412</subfield></datafield></record></collection>
genre 1\p (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV014278004
illustrated Illustrated
indexdate 2024-12-23T15:51:25Z
institution BVB
isbn 052133389X
0521336554
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009791412
oclc_num 257004507
open_access_boolean
owner DE-703
DE-355
DE-BY-UBR
DE-20
owner_facet DE-703
DE-355
DE-BY-UBR
DE-20
physical XII, 226 S. graph. Darst.
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Cambridge Univ. Press
record_format marc
series2 Cambridge texts in applied mathematics
spellingShingle Drazin, Philip G. 1934-2002
Johnson, R. S. 1944-
Solitons an introduction
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Soliton (DE-588)4135213-0 gnd
Algebraische Gleichung (DE-588)4001162-8 gnd
Störungstheorie (DE-588)4128420-3 gnd
Approximationsalgorithmus (DE-588)4500954-5 gnd
subject_GND (DE-588)4044779-0
(DE-588)4135213-0
(DE-588)4001162-8
(DE-588)4128420-3
(DE-588)4500954-5
(DE-588)4151278-9
title Solitons an introduction
title_auth Solitons an introduction
title_exact_search Solitons an introduction
title_full Solitons an introduction P. G. Drazin ; R. S. Johnson
title_fullStr Solitons an introduction P. G. Drazin ; R. S. Johnson
title_full_unstemmed Solitons an introduction P. G. Drazin ; R. S. Johnson
title_short Solitons
title_sort solitons an introduction
title_sub an introduction
topic Partielle Differentialgleichung (DE-588)4044779-0 gnd
Soliton (DE-588)4135213-0 gnd
Algebraische Gleichung (DE-588)4001162-8 gnd
Störungstheorie (DE-588)4128420-3 gnd
Approximationsalgorithmus (DE-588)4500954-5 gnd
topic_facet Partielle Differentialgleichung
Soliton
Algebraische Gleichung
Störungstheorie
Approximationsalgorithmus
Einführung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009791412&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT drazinphilipg solitonsanintroduction
AT johnsonrs solitonsanintroduction