Perfect graphs

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Ramírez-Alfonsín, Jorge L. (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Chichester [u.a.] John Wiley & Sons 2001
Schriftenreihe:Wiley-Interscience Series in Discrete Mathematics and Optimization
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV014105036
003 DE-604
005 20210301
007 t|
008 020121s2001 xx d||| |||| 00||| eng d
020 |a 0471489700  |9 0-471-48970-0 
035 |a (OCoLC)46640717 
035 |a (DE-599)BVBBV014105036 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-91G  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA166.16 
082 0 |a 511/.5  |2 21 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a DAT 537f  |2 stub 
084 |a 05C17  |2 msc 
084 |a 00B15  |2 msc 
084 |a MAT 055f  |2 stub 
245 1 0 |a Perfect graphs  |c edited by Jorge L. Ramírez Alfonsín, University of Bonn, Germany, Bruce A. Reed, CNRS, Paris, France 
264 1 |a Chichester [u.a.]  |b John Wiley & Sons  |c 2001 
300 |a XXII, 362 Seiten  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Wiley-Interscience Series in Discrete Mathematics and Optimization 
650 4 |a Graphes parfaits 
650 4 |a Perfect graphs 
650 0 7 |a Graphentheorie  |0 (DE-588)4113782-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Graphentheorie  |0 (DE-588)4113782-6  |D s 
689 0 |5 DE-604 
700 1 |a Ramírez-Alfonsín, Jorge L.  |4 edt 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009662737&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009662737 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 055f 2001 A 32938
DE-BY-TUM_katkey 1371663
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020123484
_version_ 1820814193533648896
adam_text PERFECT GRAPHS EDITED BY JORGE L. RAMIREZ ALFONSM UNIVERSITY OF BONN, GERMANY BRUCE A. REED CNRS, PARIS, FRANCE JOHN WILEY & SONS, LTD CHICHESTER * NEW YORK * WEINHEIM * BRISBANE * SINGAPORE * TORONTO CONTENTS LIST OF CONTRIBUTORS XIII PREFACE XV ACKNOWLEDGEMENTS XXI 1 ORIGINS AND GENESIS C. BERGE AND J.L. RAMIREZ ALFONSIN 1 1.1 PERFECTION 1 1.2 COMMUNICATION THEORY 1 1.3 THE PERFECT GRAPH CONJECTURE 3 1.4 SHANNON S CAPACITY 7 1.5 TRANSLATION OF THE HALLE-WITTENBERG PROCEEDINGS 7 1.6 INDIAN REPORT 10 REFERENCES 11 2 FROM CONJECTURE TO THEOREM BRUCE A. REED 13 2.1 GALLAI S GRAPHS 14 2.2 THE PERFECT GRAPH THEOREM 16 2.3 SOME POLYHEDRAL CONSEQUENCES 18 2.4 A STRONGER THEOREM 22 REFERENCES 23 3 A TRANSLATION OF GALLAI S PAPER: TRANSITIV ORIENTIERBARE GRAPHEN FREDERIC MAFFRAY AND MYRIAM PREISSMANN 25 TRANSLATORS FOREWORD 25 3.1 INTRODUCTION AND RESULTS 26 3.2 THE PROOFS OF THEOREMS (3.1.2), (3.1.5) AND (3.1.6) 34 3.3 THE PROOFS OF (3.1.8) AND (3.1.9) 38 3.4 THE PROOF OF (3.1.16) 40 3.5 THE PROOF OF (3.1.17) 44 3.6 DETERMINATION OF ALL IRREDUCIBLE GRAPHS 47 3.7 DETERMINATION OF THE IRREDUCIBLE GRAPHS 56 REFERENCES 65 VLLL CONTENTS 4 EVEN PAIRS HAZEL EVERETT, CELINA M. H. DE FIGUEIREDO, CLAUDIA LINHARES SALES, FREDERIC MAFFRAY, OSCAR PORTO AND BRUCE A. REED 67 4.1 INTRODUCTION 67 4.2 EVEN PAIRS AND PERFECT GRAPHS 70 4.3 PERFECTLY CONTRACTILE GRAPHS 72 4.3.1 WEAKLY TRIANGULATED GRAPHS 72 4.3.2 MEYNIEL GRAPHS 73 4.3.3 PERFECTLY ORDERABLE GRAPHS 75 4.3.4 OTHER CLASSES OF PERFECTLY CONTRACTILE GRAPHS 77 4.3.5 GRAPHS THAT MIGHT BE PERFECTLY CONTRACTILE 78 4.3.6 FORBIDDEN SUBGRAPHS IN PERFECTLY CONTRACTILE GRAPHS 78 4.4 QUASI-PARITY GRAPHS 80 4.4.1 CHARACTERIZATION OF QP AND SQP GRAPHS 82 4.5 RECENT PROGRESS 83 4.5.1 PLANAR GRAPHS 84 4.5.2 CLAW-FREE GRAPHS 85 4.5.3 BULL-FREE GRAPHS 86 4.5.4 DIAMOND-FREE GRAPHS 87 4.6 ODD PAIRS 88 REFERENCES 89 5 THE PJ-STRUCTURE OF PERFECT GRAPHS STEFAN HOUGARDY 93 5.1 INTRODUCTION 93 5.2 P 4 -STRUCTURE: BASICS, ISOMORPHISMS AND RECOGNITION 94 5.3 MODULES, /I-SETS, SPLIT GRAPHS AND UNIQUE PJ-STRUCTURE 96 5.4 THE SEMI-STRONG PERFECT GRAPH THEOREM 101 5.5 THE STRUCTURE OF THE PT-ISOMORPHISM CLASSES 102 5.6 RECOGNIZING P 4 -STRUCTURE 105 5.7 THE PI-STRUCTURE OF MINIMALLY IMPERFECT GRAPHS 106 5.8 THE PARTNER STRUCTURE AND OTHER GENERALIZATIONS 107 5.9 **-STRUCTURE 108 REFERENCES 110 6 FORBIDDING HOLES AND ANTIHOLES RYAN HAYWARD AND BRUCE A. REED 113 6.1 INTRODUCTION 113 6.2 GRAPHS WITH NO HOLES 114 6.3 GRAPHS WITH NO DISCS 116 6.4 GRAPHS WITH NO LONG HOLES 120 6.5 BALANCED MATRICES 121 6.6 BIPARTITE GRAPHS WITH NO HOLE OF LENGTH 4FC + 2 122 6.6.1 SOME PRELIMINARY REMARKS 124 6.6.2 CLEAN HOLES 125 6.6.3 A RECOGNITION ALGORITHM 126 6.6.4 A FRESH LOOK AT CLEANLINESS 127 6.6.5 RECOGNIZING BALANCEABLE GRAPHS 129 CONTENTS IX 6.7 GRAPHS WITHOUT EVEN HOLES 130 6.7.1 THE DECOMPOSITION THEOREM 131 6.8 /^-PERFECT GRAPHS 132 6.9 GRAPHS WITHOUT ODD HOLES 133 REFERENCES 135 7 PERFECTLY ORDERABLE GRAPHS: A SURVEY CHINH T. HOAENG 139 7.1 INTRODUCTION 139 7.2 CLASSICAL GRAPHS 140 7.2.1 TRIANGULATED GRAPHS 141 7.2.2 CHORDAL BIPARTITE GRAPHS AND GAMMA-FREE MATRICES 141 7.2.3 COMPARABILITY GRAPHS 141 7.2.4 INTERVAL GRAPHS 142 7.3 MINIMAL NONPERFECTLY ORDERABLE GRAPHS 142 7.4 ORIENTATIONS 144 7.4.1 SIX CLASSES OF PERFECTLY ORDERABLE GRAPHS 144 7.4.2 OPPOSITION ORIENTATION 146 7.5 GENERALIZATIONS OF TRIANGULATED GRAPHS 147 7.5.1 QUASI-TRIANGULATED GRAPHS 147 7.5.2 BRITTLE GRAPHS 148 7.5.3 QUASI-BRITTLE GRAPHS 149 7.5.4 C-ORIENTATION 149 7.6 GENERALIZATIONS OF COMPLEMENTS OF CHORDAL BIPARTITE GRAPHS 149 7.6.1 CLAW-FREE GRAPHS 149 7.6.2 P 5 -FREE WEAKLY TRIANGULATED GRAPHS 150 7.6.3 BULL-FREE PERFECTLY ORDERABLE GRAPHS 151 7.6.4 D-GRAPHS 151 7.7 OTHER CLASSES OF PERFECTLY ORDERABLE GRAPHS 152 7.7.1 COMPLEMENTS OF TOLERANCE GRAPHS 152 7.7.2 STRONGLY PERFECTLY ORDERABLE GRAPHS 152 7.7.3 CHARMING GRAPHS 153 7.7.4 NICE GRAPHS 153 7.7.5 BIPARTABLE GRAPHS 153 7.7.6 INTERSECTION AND UNION OF TWO THRESHOLD GRAPHS 153 7.7.7 P 4 COMPOSITION 156 7.8 VERTEX ORDERINGS 156 7.8.1 LEXICOGRAPHIC BREADTH-FIRST SEARCH 157 7.8.2 MAXIMAL CARDINALITY SEARCH 158 7.8.3 ORDERS BY DEGREES 158 7.9 GENERALIZATIONS OF PERFECTLY ORDERABLE GRAPHS 159 7.9.1 QUASI-PERFECTLY ORDERABLE GRAPHS 160 7.9.2 PROPERLY ORDERABLE GRAPHS 160 7.9.3 PERFECTLY ORIENTABLE GRAPHS 161 7.10 OPTIMIZING PERFECTLY ORDERED GRAPHS 161 REFERENCES 163 X CONTENTS 8 CUTSETS IN PERFECT AND MINIMAL IMPERFECT GRAPHS IRENA RUSU 167 8.1 INTRODUCTION 167 8.2 HOW DID IT START? 168 8.3 MAIN RESULTS ON MINIMAL IMPERFECT GRAPHS 169 8.4 APPLICATIONS: STAR CUTSETS 172 8.5 APPLICATIONS: CLIQUE AND MULTIPARTITE CUTSETS 174 8.6 APPLICATIONS: STABLE CUTSETS 176 8.7 TWO (RESOLVED) CONJECTURES 178 8.8 THE CONNECTIVITY OF MINIMAL IMPERFECT GRAPHS 179 8.9 SOME (MORE) PROBLEMS 181 REFERENCES 181 9 SOME ASPECTS OF MINIMAL IMPERFECT GRAPHS MYRIAM PREISSMANN AND ANDRDS SEBO 185 9.1 INTRODUCTION 185 9.1.1 DEFINITIONS AND NOTATION 186 9.1.2 CLASSIFICATIONS OF THE RESULTS 188 9.1.3 POLYHEDRA 189 9.1.4 TESTING IMPERFECTNESS AND PARTITIONABILITY 189 9.2 IMPERFECT AND PARTITIONABLE GRAPHS 191 9.2.1 BASIC PROPERTIES 191 9.2.2 SMALL CERTIFICATE FOR IMPERFECTNESS 193 9.2.3 SMALL CERTIFICATES FOR PARTITIONABLE GRAPHS 194 9.3 PROPERTIES 195 9.3.1 PARTITIONABLE AND MINIMAL IMPERFECT GRAPHS 195 9.3.2 GENUINE PROPERTIES 197 9.4 CONSTRUCTIONS 207 9.4.1 GENERALITIES 207 9.4.2 PARTITIONABLE GRAPHS WITH CIRCULAR SYMMETRY 209 9.4.3 ADDING A CRITICAL CLIQUE 210 REFERENCES 212 10 GRAPH IMPERFECTION AND CHANNEL ASSIGNMENT COLIN MCDIARMID 215 10.1 INTRODUCTION 215 10.2 THE IMPERFECTION RATIO 217 10.3 ALTERNATIVE DEFINITIONS 219 10.4 FURTHER RESULTS AND QUESTIONS 220 10.4.1 LIST COLOURING 220 10.4.2 TRIANGLE-FREE PLANAR GRAPHS 221 10.4.3 IMPERFECTION AND ODD HOLES 221 10.4.4 DILATION RATIO 222 10.4.5 GRAPH ENTROPY 223 10.4.6 RANDOM GRAPHS 224 10.4.7 EXTREMAL BEHAVIOUR 225 10.4.8 HARDNESS 225 10.4.9 LEXICOGRAPHIC PRODUCTS 225 10.4.10 VALUES OF IMP(G) 225 CONTENTS XI 10.4.11 HOLES AND ANTIHOLES 226 10.4.12 BINARY IMPERFECTION RATIO 226 10.4.13 CIRCULAR ARC GRAPHS 226 10.4.14 UNIT DISC GRAPHS 227 10.5 BACKGROUND ON CHANNEL ASSIGNMENT 227 REFERENCES 229 11 A GENTLE INTRODUCTION TO SEMI-DEFINITE PROGRAMMING BRUCE A. REED 233 11.1 INTRODUCTION 233 11.2 THE ELLIPSOID METHOD 235 11.2.1 HOW THE ALGORITHM WORKS 237 11.2.2 SOLVING LPS 239 11.3 SOLVING SEMI-DEFINITE PROGRAMS 241 11.4 RANDOMIZED ROUNDING AND DERANDOMIZATION 244 11.4.1 THE METHOD OF CONDITIONAL EXPECTATION FOR MAXSAT 245 11.4.2 RANDOMIZED ROUNDING 246 11.4.3 A COMBINED APPROACH 247 11.4.4 RANDOM PROJECTION 248 11.5 APPROXIMATING MAXCUT 248 11.6 APPROXIMATING BANDWIDTH 250 11.6.1 THE FIRST ALGORITHM 250 11.6.2 A MORE SOPHISTICATED ALGORITHM 252 11.7 GRAPH COLOURING 252 11.7.1 COLOURING PERFECT GRAPHS 252 11.7.2 COLOURING 3-COLOURABLE GRAPHS 254 11.8 THE THETA BODY 256 REFERENCES 258 12 THE THETA BODY AND IMPERFECTION F.B. SHEPHERD 261 12.1 BACKGROUND AND OVERVIEW 261 12.1.1 PERFECTION AND INTEGER PROGRAMMING 261 12.1.2 IMPERFECTION AND PARTITIONABILITY 262 12.1.3 OVERVIEW 263 12.1.4 PARTITIONABILITY AND BRANCH AND CUT METHODS FOR PACKING PROBLEMS 266 12.2 OPTIMIZATION, CONVEXITY AND GEOMETRY 267 12.2.1 CONVEXITY AND ENCODING CONVENTIONS 268 12.2.2 OPTIMIZATION OVER A CONVEX BODY: CONSEQUENCES OF THE ELLIPSOID METHOD 269 12.2.3 THE DISCOVERY PROBLEM 270 12.3 THE THETA BODY 272 12.3.1 THREE CONVEX BODIES 272 12.3.2 A SEMI-DEFINITE FORMULATION 273 12.3.3 ALGORITHMS FOR THE THETA BODY 275 12.3.4 ADDITIVE GAP GUARANTEES AND THE PROTRUSION OF THE THETA BODY 276 XII CONTENTS 12.4 PARTITIONABLE GRAPHS 280 12.4.1 A CHARACTERIZATION 280 12.4.2 A RECOGNITION ALGORITHM 283 12.5 PERFECT GRAPH CHARACTERIZATIONS AND A CONTINUOUS PERFECT GRAPH CONJECTURE 285 REFERENCES 289 13 PERFECT GRAPHS AND GRAPH ENTROPY GABOR SIMONYI 293 13.1 INTRODUCTION 293 13.2 THE INFORMATION-THEORETIC INTERPRETATION 295 13.3 SOME BASIC PROPERTIES 297 13.3.1 MONOTONICITY 297 13.3.2 SUB-ADDITIVITY 298 13.3.3 ADDITIVITY OF SUBSTITUTION 298 13.4 STRUCTURAL THEOREMS: RELATION TO PERFECTNESS 300 13.4.1 ADDITIVITY FOR COMPLEMENTARY PAIRS 300 13.4.2 IMPERFECTION RATIO 302 13.4.3 ADDITIVITY FOR ARBITRARY PAIRS 304 13.4.4 SUB- AND SUPERMODULAR PAIRS 306 13.4.5 WEAK ADDITIVITY AND NORMALITY 307 13.5 APPLICATIONS 309 13.5.1 KAHN AND KIM S APPLICATION FOR SORTING 309 13.5.2 ABOUT OTHER APPLICATIONS 310 13.6 GENERALIZATIONS 312 13.6.1 HYPERGRAPH ENTROPY 312 13.6.2 ADDITIVITY FOR COMPLEMENTARY UNIFORM HYPERGRAPHS 312 13.6.3 ENTROPY OF CONVEX CORNERS 315 13.6.4 JOB SCHEDULING APPLICATION 315 13.7 GRAPH CAPACITIES AND OTHER RELATED FUNCTIONALS 316 13.7.1 SHANNON CAPACITY 316 13.7.2 SPERNER CAPACITY 319 13.7.3 PROBABILISTIC LOVAESZ FUNCTION 321 13.7.4 CO-ENTROPY 323 REFERENCES 325 14 A BIBLIOGRAPHY ON PERFECT GRAPHS VASEK CHVDTAL 329 INDEX 359
any_adam_object 1
author2 Ramírez-Alfonsín, Jorge L.
author2_role edt
author2_variant j l r a jlr jlra
author_facet Ramírez-Alfonsín, Jorge L.
building Verbundindex
bvnumber BV014105036
callnumber-first Q - Science
callnumber-label QA166
callnumber-raw QA166.16
callnumber-search QA166.16
callnumber-sort QA 3166.16
callnumber-subject QA - Mathematics
classification_rvk SK 890
classification_tum DAT 537f
MAT 055f
ctrlnum (OCoLC)46640717
(DE-599)BVBBV014105036
dewey-full 511/.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.5
dewey-search 511/.5
dewey-sort 3511 15
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01569nam a2200421 c 4500</leader><controlfield tag="001">BV014105036</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210301 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020121s2001 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471489700</subfield><subfield code="9">0-471-48970-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)46640717</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014105036</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA166.16</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05C17</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00B15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 055f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perfect graphs</subfield><subfield code="c">edited by Jorge L. Ramírez Alfonsín, University of Bonn, Germany, Bruce A. Reed, CNRS, Paris, France</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">John Wiley &amp; Sons</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 362 Seiten</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley-Interscience Series in Discrete Mathematics and Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphes parfaits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perfect graphs</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramírez-Alfonsín, Jorge L.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009662737&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009662737</subfield></datafield></record></collection>
id DE-604.BV014105036
illustrated Illustrated
indexdate 2024-12-23T15:47:34Z
institution BVB
isbn 0471489700
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009662737
oclc_num 46640717
open_access_boolean
owner DE-703
DE-91G
DE-BY-TUM
DE-83
DE-11
DE-188
owner_facet DE-703
DE-91G
DE-BY-TUM
DE-83
DE-11
DE-188
physical XXII, 362 Seiten graph. Darst.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher John Wiley & Sons
record_format marc
series2 Wiley-Interscience Series in Discrete Mathematics and Optimization
spellingShingle Perfect graphs
Graphes parfaits
Perfect graphs
Graphentheorie (DE-588)4113782-6 gnd
subject_GND (DE-588)4113782-6
title Perfect graphs
title_auth Perfect graphs
title_exact_search Perfect graphs
title_full Perfect graphs edited by Jorge L. Ramírez Alfonsín, University of Bonn, Germany, Bruce A. Reed, CNRS, Paris, France
title_fullStr Perfect graphs edited by Jorge L. Ramírez Alfonsín, University of Bonn, Germany, Bruce A. Reed, CNRS, Paris, France
title_full_unstemmed Perfect graphs edited by Jorge L. Ramírez Alfonsín, University of Bonn, Germany, Bruce A. Reed, CNRS, Paris, France
title_short Perfect graphs
title_sort perfect graphs
topic Graphes parfaits
Perfect graphs
Graphentheorie (DE-588)4113782-6 gnd
topic_facet Graphes parfaits
Perfect graphs
Graphentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009662737&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT ramirezalfonsinjorgel perfectgraphs