Riemannian geometry of contact and symplectic manifolds

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Blair, David E. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Birkhäuser 2002
Schriftenreihe:Progress in mathematics 203
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV013990114
003 DE-604
005 20020206
007 t|
008 011102s2002 xx d||| |||| 00||| eng d
016 7 |a 963634879  |2 DE-101 
020 |a 0817642617  |9 0-8176-4261-7 
020 |a 3764342617  |9 3-7643-4261-7 
035 |a (OCoLC)48256138 
035 |a (DE-599)BVBBV013990114 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-824  |a DE-19  |a DE-634  |a DE-11 
050 0 |a QA614.3 
082 0 |a 516.3/73  |2 21 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
100 1 |a Blair, David E.  |e Verfasser  |4 aut 
245 1 0 |a Riemannian geometry of contact and symplectic manifolds  |c David E. Blair 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 2002 
300 |a XII, 260 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in mathematics  |v 203 
650 7 |a GEOMETRIA RIEMANNIANA  |2 larpcal 
650 7 |a GEOMETRIA SIMPLETICA  |2 larpcal 
650 4 |a Riemann, Géométrie de 
650 4 |a Variétés de contact 
650 4 |a Variétés symplectiques 
650 4 |a Contact manifolds 
650 4 |a Geometry, Riemannian 
650 4 |a Symplectic manifolds 
650 0 7 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Symplektische Mannigfaltigkeit  |0 (DE-588)4290704-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Kontaktmannigfaltigkeit  |0 (DE-588)4669522-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |D s 
689 0 1 |a Symplektische Mannigfaltigkeit  |0 (DE-588)4290704-4  |D s 
689 0 2 |a Kontaktmannigfaltigkeit  |0 (DE-588)4669522-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |D s 
689 1 |5 DE-604 
830 0 |a Progress in mathematics  |v 203  |w (DE-604)BV000004120  |9 203 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009575558&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009575558 

Datensatz im Suchindex

DE-19_call_number 1601/Zi 343 Bla 31323
DE-19_location 95
DE-BY-UBM_katkey 2695430
DE-BY-UBM_media_number 41602523550018
_version_ 1823052429487243265
adam_text Contents 1 Symplectic Manifolds 1 1.1 Definitions and examples 1 1.2 Lagrangian submanifolds 5 1.3 The Darboux Weinstein theorems 7 1.4 Symplectomorphisms 9 2 Principal S^bundles 11 2.1 The set of principal S1 bundles as a group 11 2.2 Connections on a principal bundle 14 3 Contact Manifolds 17 3.1 Definitions 17 3.2 Examples 20 3.2.1 M2n+1 20 3.2.2 Rn+1 x PW1 21 3.2.3 M2n+1 C M2n+2 with TmM2n+1 D {0} = 0 21 3.2.4 T{M, TXM 22 3.2.5 T*MxR 22 3.2.6 T3 23 3.2.7 T5 23 3.2.8 Overtwisted contact structures 24 3.2.9 Contact circles 25 3.3 The Boothby Wang fibration 26 3.4 The Weinstein conjecture 28 viii Contents 4 Associated Metrics 31 4.1 Almost complex and almost contact structures 31 4.2 Polarization and associated metrics 34 4.3 Polarization of metrics as a projection 38 4.3.1 Some linear algebra 39 4.3.2 Results on the set A 41 4.4 Action of symplectic and contact transformations 45 4.5 Examples of almost contact metric manifolds 48 4.5.1 R2n+1 48 4.5.2 M2n+1 C M2n+2 almost complex 49 4.5.3 5s c 56 50 4.5.4 The Boothby Wang fibration 52 4.5.5 M2n x R 53 4.5.6 Parallelizable manifolds 53 5 Integral Submanifolds and Contact Transformations 55 5.1 Integral submanifolds 55 5.2 Contact transformations 57 5.3 Examples of integral submanifolds 59 5.3.1 Sn c S2n+1 59 5.3.2 T2 c 5s 59 5.3.3 Legendre curves and Whitney spheres 60 i 5.3.4 Lift of a Lagrangian submanifold 62 6 Sasakian and Cosymplectic Manifolds 63 6.1 Normal almost contact structures 63 6.2 The tensor field h 67 6.3 Definition of a Sasakian manifold 69 6.4 CR manifolds 72 6.5 Cosymplectic manifolds and remarks on the Sasakian definition 77 6.6 Products of almost contact manifolds 79 6.7 Examples 81 6.7.1 M2n+1 81 6.7.2 Principal circle bundles 81 6.7.3 A non normal almost contact structure on S5 83 6.7.4 M2n+1 c M2n+2 85 6.7.5 Brieskorn manifolds 85 6.8 Topology 87 7 Curvature of Contact Metric Manifolds 91 7.1 Basic curvature properties 91 7.2 Curvature of contact metric manifolds 95 Contents ix 7.3 ^ sectional curvature 110 7.4 Examples of Sasakian space forms 114 7.4.1 S2n+1 114 7.4.2 M2n+1 114 7.4.3 B xl 115 7.5 Locally (^ symmetric spaces 115 8 Submanifolds of Kahler and Sasakian Manifolds 121 8.1 Invariant submanifolds 121 8.2 Lagrangian and integral submanifolds 124 8.3 Legendre curves 133 9 Tangent Bundles and Tangent Sphere Bundles 137 9.1 Tangent bundles 137 9.2 Tangent sphere bundles 142 9.3 Geometry of vector bundles 148 9.4 Normal bundles 150 10 Curvature Functionals on Spaces of Associated Metrics 157 10.1 Introduction to critical metric problems 157 10.2 The * scalar curvature 162 10.3 The integral of Ric(£) 166 10.4 The Webster scalar curvature 170 10.5 A gauge invariant 173 10.6 The Abbena metric as a critical point 174 11 Negative ^ sectional Curvature 177 11.1 Special Directions in the contact subbundle 177 11.2 Anosov flows 178 11.3 Conformally Anosov flows 184 12 Complex Contact Manifolds 189 12.1 Complex contact manifolds and associated metrics 189 12.2 Examples of complex contact manifolds 193 12.2.1 Complex Heisenberg group 193 12.2.2 Odd dimensional complex projective space 194 12.2.3 Twistor spaces 196 12.2.4 The complex Boothby Wang fibration 198 12.2.5 3 dimensional homogeneous examples 200 12.2.6 Cn+1 x CPn(16) 200 12.3 Normality of complex contact manifolds 202 12.4 G// sectional curvature 204 x Contents 12.5 The set of associated metrics and integral functional 206 12.6 Holomorphic Legendre curves 209 12.7 The Calabi (Veronese) imbeddings as integral submanifolds ofCP2n+i 212 13 3 Sasakian Manifolds 215 13.1 3 Sasakian manifolds 215 13.2 Integral submanifolds 223 Bibliography 227 Subject Index 253 Author Index 257
any_adam_object 1
author Blair, David E.
author_facet Blair, David E.
author_role aut
author_sort Blair, David E.
author_variant d e b de deb
building Verbundindex
bvnumber BV013990114
callnumber-first Q - Science
callnumber-label QA614
callnumber-raw QA614.3
callnumber-search QA614.3
callnumber-sort QA 3614.3
callnumber-subject QA - Mathematics
classification_rvk SK 370
ctrlnum (OCoLC)48256138
(DE-599)BVBBV013990114
dewey-full 516.3/73
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.3/73
dewey-search 516.3/73
dewey-sort 3516.3 273
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02130nam a2200553 cb4500</leader><controlfield tag="001">BV013990114</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020206 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">011102s2002 xx d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">963634879</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817642617</subfield><subfield code="9">0-8176-4261-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764342617</subfield><subfield code="9">3-7643-4261-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)48256138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013990114</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blair, David E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian geometry of contact and symplectic manifolds</subfield><subfield code="c">David E. Blair</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 260 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">203</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GEOMETRIA RIEMANNIANA</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GEOMETRIA SIMPLETICA</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Géométrie de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés de contact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés symplectiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contact manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symplectic manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">203</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">203</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009575558&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009575558</subfield></datafield></record></collection>
id DE-604.BV013990114
illustrated Illustrated
indexdate 2025-02-03T16:57:40Z
institution BVB
isbn 0817642617
3764342617
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009575558
oclc_num 48256138
open_access_boolean
owner DE-824
DE-19
DE-BY-UBM
DE-634
DE-11
owner_facet DE-824
DE-19
DE-BY-UBM
DE-634
DE-11
physical XII, 260 S. graph. Darst.
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Birkhäuser
record_format marc
series Progress in mathematics
series2 Progress in mathematics
spellingShingle Blair, David E.
Riemannian geometry of contact and symplectic manifolds
Progress in mathematics
GEOMETRIA RIEMANNIANA larpcal
GEOMETRIA SIMPLETICA larpcal
Riemann, Géométrie de
Variétés de contact
Variétés symplectiques
Contact manifolds
Geometry, Riemannian
Symplectic manifolds
Riemannsche Geometrie (DE-588)4128462-8 gnd
Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd
Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd
subject_GND (DE-588)4128462-8
(DE-588)4290704-4
(DE-588)4669522-9
title Riemannian geometry of contact and symplectic manifolds
title_auth Riemannian geometry of contact and symplectic manifolds
title_exact_search Riemannian geometry of contact and symplectic manifolds
title_full Riemannian geometry of contact and symplectic manifolds David E. Blair
title_fullStr Riemannian geometry of contact and symplectic manifolds David E. Blair
title_full_unstemmed Riemannian geometry of contact and symplectic manifolds David E. Blair
title_short Riemannian geometry of contact and symplectic manifolds
title_sort riemannian geometry of contact and symplectic manifolds
topic GEOMETRIA RIEMANNIANA larpcal
GEOMETRIA SIMPLETICA larpcal
Riemann, Géométrie de
Variétés de contact
Variétés symplectiques
Contact manifolds
Geometry, Riemannian
Symplectic manifolds
Riemannsche Geometrie (DE-588)4128462-8 gnd
Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd
Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd
topic_facet GEOMETRIA RIEMANNIANA
GEOMETRIA SIMPLETICA
Riemann, Géométrie de
Variétés de contact
Variétés symplectiques
Contact manifolds
Geometry, Riemannian
Symplectic manifolds
Riemannsche Geometrie
Symplektische Mannigfaltigkeit
Kontaktmannigfaltigkeit
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009575558&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000004120
work_keys_str_mv AT blairdavide riemanniangeometryofcontactandsymplecticmanifolds