Principles of functional analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schechter, Martin 1930- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, RI AMS 2002
Ausgabe:2. ed.
Schriftenreihe:Graduate studies in mathematics 36
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV013947212
003 DE-604
005 20210113
007 t|
008 011009s2002 xx |||| 00||| eng d
020 |a 9780821828953  |9 978-0-8218-2895-3 
020 |a 0821828959  |9 0-8218-2895-9 
035 |a (OCoLC)314245782 
035 |a (DE-599)BVBBV013947212 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-91G  |a DE-703  |a DE-634  |a DE-83  |a DE-11  |a DE-188 
082 0 |a 515.7 
082 0 |a 515/.7 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a MAT 460f  |2 stub 
084 |a 47-01  |2 msc 
084 |a 46-01  |2 msc 
100 1 |a Schechter, Martin  |d 1930-  |e Verfasser  |0 (DE-588)1042649022  |4 aut 
245 1 0 |a Principles of functional analysis  |c Martin Schechter 
250 |a 2. ed. 
264 1 |a Providence, RI  |b AMS  |c 2002 
300 |a XXI, 425 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate studies in mathematics  |v 36 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4704-1147-3 
830 0 |a Graduate studies in mathematics  |v 36  |w (DE-604)BV009739289  |9 36 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009543813&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009543813 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 MAT 460f 2002 B 5
DE-BY-TUM_katkey 1258746
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020663772
DE-BY-UBR_call_number 80/SK 600 S314(2)
DE-BY-UBR_katkey 3209997
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069030780472
_version_ 1822747413197094912
adam_text Contents PREFACE TO THE SECOND EDITION xv FROM THE PREFACE TO THE FIRST EDITION xix Chapter 1. BASIC NOTIONS 1 §1.1. A problem from differential equations 1 §1.2. An examination of the results 6 §1.3. Examples of Banach spaces 9 §1.4. Fourier series 17 §1.5. Problems 24 Chapter 2. DUALITY 29 §2.1. The Riesz representation theorem 29 §2.2. The Hahn Banach theorem 33 §2.3. Consequences of the Hahn Banach theorem 36 §2.4. Examples of dual spaces 39 §2.5. Problems 51 Chapter 3. LINEAR OPERATORS 55 §3.1. Basic properties 55 §3.2. The adjoint operator 57 §3.3. Annihilators 59 §3.4. The inverse operator 60 §3.5. Operators with closed ranges 66 §3.6. The uniform boundedness principle 71 ix x Contents §3.7. The open mapping theorem 71 §3.8. Problems 72 Chapter 4. THE RIESZ THEORY FOR COMPACT OPERATORS 77 §4.1. A type of integral equation 77 §4.2. Operators of finite rank 85 §4.3. Compact operators 88 §4.4. The adjoint of a compact operator 95 §4.5. Problems 98 Chapter 5. FREDHOLM OPERATORS 101 §5.1. Orientation 101 §5.2. Further properties 105 §5.3. Perturbation theory 109 §5.4. The adjoint operator 112 §5.5. A special case 114 §5.6. Semi Fredholm operators 117 §5.7. Products of operators 123 §5.8. Problems 126 Chapter 6. SPECTRAL THEORY 129 §6.1. The spectrum and resolvent sets 129 §6.2. The spectral mapping theorem 133 §6.3. Operational calculus 134 §6.4. Spectral projections 141 §6.5. Complexification 147 §6.6. The complex Hahn Banach theorem 148 §6.7. A geometric lemma 150 §6.8. Problems 151 Chapter 7. UNBOUNDED OPERATORS 155 §7.1. Unbounded Fredholm operators 155 §7.2. Further properties 161 §7.3. Operators with closed ranges 164 §7.4. Total subsets 169 §7.5. The essential spectrum 171 §7.6. Unbounded semi Fredholm operators 173 §7.7. The adjoint of a product of operators 177 Contents xi §7.8. Problems 179 Chapter 8. REFLEXIVE BANACH SPACES 183 §8.1. Properties of reflexive spaces 183 §8.2. Saturated subspaces 185 §8.3. Separable spaces 188 §8.4. Weak convergence 190 §8.5. Examples 192 §8.6. Completing a normed vector space 196 §8.7. Problems 197 Chapter 9. BANACH ALGEBRAS 201 §9.1. Introduction 201 §9.2. An example 205 §9.3. Commutative algebras 206 §9.4. Properties of maximal ideals 209 §9.5. Partially ordered sets 211 §9.6. Riesz operators 213 §9.7. Fredholm perturbations 215 §9.8. Semi Fredholm perturbations 216 §9.9. Remarks 222 §9.10. Problems 222 Chapter 10. SEMIGROUPS 225 §10.1. A differential equation 225 §10.2. Uniqueness 228 §10.3. Unbounded operators 229 §10.4. The infinitesimal generator 235 §10.5. An approximation theorem 238 §10.6. Problems 240 Chapter 11. HILBERT SPACE 243 §11.1. When is a Banach space a Hilbert space? 243 §11.2. Normal operators 246 §11.3. Approximation by operators of finite rank 252 §11.4. Integral operators 253 §11.5. Hyponormal operators 257 §11.6. Problems 262 xii Contents Chapter 12. BILINEAR FORMS 265 §12.1. The numerical range 265 §12.2. The associated operator 266 §12.3. Symmetric forms 268 §12.4. Closed forms 270 §12.5. Closed extensions 274 §12.6. Closable operators 278 §12.7. Some proofs 281 §12.8. Some representation theorems 284 §12.9. Dissipative operators 285 §12.10. The case of a line or a strip 290 §12.11. Selfadjoint extensions 294 §12.12. Problems 295 Chapter 13. SELFADJOINT OPERATORS 297 §13.1. Orthogonal projections 297 §13.2. Square roots of operators 299 §13.3. A decomposition of operators 304 §13.4. Spectral resolution 306 §13.5. Some consequences 311 §13.6. Unbounded selfadjoint operators 314 §13.7. Problems 322 Chapter 14. MEASURES OF OPERATORS 325 §14.1. A seminorm 325 §14.2. Perturbation classes 329 §14.3. Related measures 332 §14.4. Measures of noncompactness 339 §14.5. The quotient space 341 §14.6. Strictly singular operators 342 §14.7. Norm perturbations 345 §14.8. Perturbation functions 350 §14.9. Factored perturbation functions 354 §14.10. Problems 357 Chapter 15. EXAMPLES AND APPLICATIONS 359 §15.1. A few remarks 359 Contents xiii §15.2. A differential operator 360 §15.3. Does A have a closed extension? 363 §15.4. The closure of A 364 §15.5. Another approach 369 §15.6. The Fourier transform 372 §15.7. Multiplication by a function 374 §15.8. More general operators 378 §15.9. B Compactness 381 §15.10. The adjoint of A 383 §15.11. An integral operator 384 §15.12. Problems 390 Appendix A. Glossary 393 Appendix B. Major Theorems 405 Bibliography 419 Index 423
any_adam_object 1
author Schechter, Martin 1930-
author_GND (DE-588)1042649022
author_facet Schechter, Martin 1930-
author_role aut
author_sort Schechter, Martin 1930-
author_variant m s ms
building Verbundindex
bvnumber BV013947212
classification_rvk SK 600
classification_tum MAT 460f
ctrlnum (OCoLC)314245782
(DE-599)BVBBV013947212
dewey-full 515.7
515/.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7
515/.7
dewey-search 515.7
515/.7
dewey-sort 3515.7
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01603nam a2200433 cb4500</leader><controlfield tag="001">BV013947212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210113 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">011009s2002 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821828953</subfield><subfield code="9">978-0-8218-2895-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821828959</subfield><subfield code="9">0-8218-2895-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314245782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013947212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 460f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schechter, Martin</subfield><subfield code="d">1930-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042649022</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of functional analysis</subfield><subfield code="c">Martin Schechter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">AMS</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 425 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">36</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-1147-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">36</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">36</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009543813&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009543813</subfield></datafield></record></collection>
id DE-604.BV013947212
illustrated Not Illustrated
indexdate 2024-12-23T15:44:44Z
institution BVB
isbn 9780821828953
0821828959
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009543813
oclc_num 314245782
open_access_boolean
owner DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-703
DE-634
DE-83
DE-11
DE-188
owner_facet DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-703
DE-634
DE-83
DE-11
DE-188
physical XXI, 425 S.
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher AMS
record_format marc
series Graduate studies in mathematics
series2 Graduate studies in mathematics
spellingShingle Schechter, Martin 1930-
Principles of functional analysis
Graduate studies in mathematics
Funktionalanalysis (DE-588)4018916-8 gnd
subject_GND (DE-588)4018916-8
title Principles of functional analysis
title_auth Principles of functional analysis
title_exact_search Principles of functional analysis
title_full Principles of functional analysis Martin Schechter
title_fullStr Principles of functional analysis Martin Schechter
title_full_unstemmed Principles of functional analysis Martin Schechter
title_short Principles of functional analysis
title_sort principles of functional analysis
topic Funktionalanalysis (DE-588)4018916-8 gnd
topic_facet Funktionalanalysis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009543813&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009739289
work_keys_str_mv AT schechtermartin principlesoffunctionalanalysis