Theory of games and economic behavior [Textbd.].
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Düsseldorf
Verl. Wirtschaft und Finanzen
2001
|
Schriftenreihe: | Die Handelsblatt-Bibliothek "Klassiker der Nationalökonomie"
|
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV013910726 | ||
003 | DE-604 | ||
007 | t| | ||
008 | 010904r2001uuuugw d||| |||| 00||| ger d | ||
016 | 7 | |a 962011991 |2 DE-101 | |
035 | |a (OCoLC)164586822 | ||
035 | |a (DE-599)BVBBV013910726 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 | ||
100 | 1 | |a Von Neumann, John |d 1903-1957 |e Verfasser |0 (DE-588)118770314 |4 aut | |
245 | 1 | 0 | |a Theory of games and economic behavior |n [Textbd.]. |c by John VonNeumann, and Oskar Morgenstern |
264 | 1 | |a Düsseldorf |b Verl. Wirtschaft und Finanzen |c 2001 | |
300 | |a XVIII, 625 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Die Handelsblatt-Bibliothek "Klassiker der Nationalökonomie" | |
500 | |a Faks.-Ausg. [der Ausg.] Princeton, Princeton Univ. Press, 1944 | ||
700 | 1 | |a Morgenstern, Oskar |d 1902-1977 |e Verfasser |0 (DE-588)118584065 |4 aut | |
773 | 0 | 8 | |w (DE-604)BV013910725 |g Te |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009518049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009518049 |
Datensatz im Suchindex
_version_ | 1820149129472376832 |
---|---|
adam_text |
CONTENTS
P
REFACE
V
T
ECHNICAL
N
OTE
VII
A
CKNOWLEDGMENT
VIII
CHAPTER
I
FORMULATION
OF
THE
ECONOMIC
PROBLEM
1.
T
HE
M
ATHEMATICAL
M
ETHOD
IN
E
CONOMICS
1
1.1.
INTRODUCTORY
REMARKS
1
1.2.
DIFFICULTIES
OF
THE
APPLICATION
OF
THE
MATHEMATICAL
METHOD
2
1.3.
NECESSARY
LIMITATIONS
OF
THE
OBJECTIVES
6
1.4.
CONCLUDING
REMARKS
7
2.
Q
UALITATIVE
D
ISCUSSION
OF
THE
P
ROBLEM
OF
R
ATIONAL
B
EHAV
-
IOR
8
2.1.
THE
PROBLEM
OF
RATIONAL
BEHAVIOR
8
2.2.
"
ROBINSON
CRUSOE
"
ECONOMY
AND
SOCIAL
EXCHANGE
ECONOMY
9
2.3.
THE
NUMBER
OF
VARIABLES
AND
THE
NUMBER
OF
PARTICIPANTS
12
2.4.
THE
CASE
OF
MANY
PARTICIPANTS:
FREE
COMPETITION
13
2.5.
THE
"
LAUSANNE
"
THEORY
15
3.
T
HE
N
OTION
OF
U
TILITY
15
3.1.
PREFERENCES
AND
UTILITIES
15
3.2.
PRINCIPLES
OF
MEASUREMENT:
PRELIMINARIES
16
3.3.
PROBABILITY
AND
NUMERICAL
UTILITIES
17
3.4.
PRINCIPLES
OF
MEASUREMENT:
DETAILED
DISCUSSION
20
3.5.
CONCEPTUAL
STRUCTURE
OF
THE
AXIOMATIC
TREATMENT
OF
NUMERICAL
UTILITIES
24
3.6.
THE
AXIOMS
AND
THEIR
INTERPRETATION
26
3.7.
GENERAL
REMARKS
CONCERNING
THE
AXIOMS
28
3.8.
THE
ROLE
OF
THE
CONCEPT
OF
MARGINAL
UTILITY
29
4.
S
TRUCTURE
OF
THE
T
HEORY
:
S
OLUTIONS
AND
S
TANDARDS
OF
B
EHAVIOR
31
4.1.
THE
SIMPLEST
CONCEPT
OF
A
SOLUTION
FOR
ONE
PARTICIPANT
31
4.2.
EXTENSION
TO
ALL
PARTICIPANTS
33
4.3.
THE
SOLUTION
AS
A
SET
OF
IMPUTATIONS
34
4.4.
THE
INTRANSITIVE
NOTION
OF
"
SUPERIORITY
"
OR
"
DOMINATION
"
37
4.5.
THE
PRECISE
DEFINITION
OF
A
SOLUTION
39
4.6.
INTERPRETATION
OF
OUR
DEFINITION
IN
TERMS
OF
"
STANDARDS
OF
BEHAVIOR
"
40
4.7.
GAMES
AND
SOCIAL
ORGANIZATIONS
43
4.8.
CONCLUDING
REMARKS
43
CHAPTER
II
GENERAL
FORMAL
DESCRIPTION
OF
GAMES
OF
STRATEGY
5.
I
NTRODUCTION
46
5.1.
SHIFT
OF
EMPHASIS
FROM
ECONOMICS
TO
GAMES
46
5.2.
GENERAL
PRINCIPLES
OF
CLASSIFICATION
AND
OF
PROCEDURE
46
X
CONTENTS
6.
T
HE
S
IMPLIFIED
C
ONCEPT
OF
A
G
AME
48
6.1.
EXPLANATION
OF
THE
TERMINI
TECHNICI
48
6.2.
THE
ELEMENTS
OF
THE
GAME
49
6.3.
INFORMATION
AND
PRELIMINARY
51
6.4.
PRELIMINARITY,
TRANSITIVITY,
AND
SIGNALING
51
7.
T
HE
C
OMPLETE
C
ONCEPT
OF
A
G
AME
55
7.1.
VARIABILITY
OF
THE
CHARACTERISTICS
OF
EACH
MOVE
55
7.2.
THE
GENERAL
DESCRIPTION
57
8.
S
ETS
AND
P
ARTITIONS
60
8.1.
DESIRABILITY
OF
A
SET-THEORETICAL
DESCRIPTION
OF
A
GAME
60
8.2.
SETS,
THEIR
PROPERTIES,
AND
THEIR
GRAPHICAL
REPRESENTATION
61
8.3.
PARTITIONS,
THEIR
PROPERTIES,
AND
THEIR
GRAPHICAL
REPRESENTATION
63
8.4.
LOGISTIC
INTERPRETATION
OF
SETS
AND
PARTITIONS
66
*9.
T
HE
S
ET
-
THEORETICAL
D
ESCRIPTION
OF
A
G
AME
67
*9.1.
THE
PARTITIONS
WHICH
DESCRIBE
A
GAME
67
*9.2.
DISCUSSION
OF
THESE
PARTITIONS
AND
THEIR
PROPERTIES
71
*10.
A
XIOMATIC
F
ORMULATION
73
*10.1.
THE
AXIOMS
AND
THEIR
INTERPRETATIONS
73
*10.2.
LOGISTIC
DISCUSSION
OF
THE
AXIOMS
76
*10.3.
GENERAL
REMARKS
CONCERNING
THE
AXIOMS
76
*10.4.
GRAPHICAL
REPRESENTATION
77
11.
STRATEGIES
AND
THE
FLNAL
SLMPLIFICATION
OF
THE
DESCRIPTION
OF
A
G
AME
79
11.1.
THE
CONCEPT
OF
A
STRATEGY
AND
ITS
FORMALIZATION
79
11.2.
THE
FINAL
SIMPLIFICATION
OF
THE
DESCRIPTION
OF
A
GAME
81
11.3.
THE
ROLE
OF
STRATEGIES
IN
THE
SIMPLIFIED
FORM
OF
A
GAME
84
11.4.
THE
MEANING
OF
THE
ZERO-SUM
RESTRICTION
84
CHAPTER
III
ZERO-SUM
TWO-PERSON
GAMES:
THEORY
12.
P
RELIMINARY
S
URVEY
85
12.1.
GENERAL
VIEWPOINTS
85
12.2.
THE
ONE-PERSON
GAME
85
12.3.
CHANCE
AND
PROBABILITY
87
12.4.
THE
NEXT
OBJECTIVE
87
13.
F
UNCTIONAL
C
ALCULUS
88
13.1.
BASIC
DEFINITIONS
88
13.2.
THE
OPERATIONS
MAX
AND
MIN
89
13.3.
COMMUTATIVITY
QUESTIONS
91
13.4.
THE
MIXED
CASE.
SADDLE
POINTS
93
13.5.
PROOFS
OF
THE
MAIN
FACTS
95
14.
S
TRICTLY
D
ETERMINED
G
AMES
98
14
1.
FORMULATION
OF
THE
PROBLEM
98
14.2.
THE
MINORANT
AND
THE
MAJORANT
GAMES
100
14.3.
DISCUSSION
OF
THE
AUXILIARY
GAMES
101
CONTENTS
XI
14.4.
CONCLUSIONS
105
14.5.
ANALYSIS
OF
STRICT
DETERMINATENESS
106
14.6.
THE
INTERCHANGE
OF
PLAYERS.
SYMMETRY
109
14.7.
NON
STRICTLY
DETERMINED
GAMES
110
14.8.
PROGRAM
OF
A
DETAILED
ANALYSIS
OF
STRICT
DETERMINATENESS
111
*15.
G
AMES
WITH
P
ERFECT
I
NFORMATION
112
*15.1.
STATEMENT
OF
PURPOSE.
INDUCTION
112
*15.2.
THE
EXACT
CONDITION
(FIRST
STEP)
114
*15.3.
THE
EXACT
CONDITION
(ENTIRE
INDUCTION)
116
*15.4.
EXACT
DISCUSSION
OF
THE
INDUCTIVE
STEP
117
*15.5.
EXACT
DISCUSSION
OF
THE
INDUCTIVE
STEP
(CONTINUATION)
120
*15.6.
THE
RESULT
IN
THE
CASE
OF
PERFECT
INFORMATION
123
*15.7.
APPLICATION
TO
CHESS
124
*15.8.
THE
ALTERNATIVE,
VERBAL
DISCUSSION
126
16.
L
INEARITY
AND
C
ONVEXITY
128
16.1.
GEOMETRICAL
BACKGROUND
128
16.2.
VECTOR
OPERATIONS
129
16.3.
THE
THEOREM
OF
THE
SUPPORTING
HYPERPLANES
134
16.4.
THE THEOREM
OF
THE
ALTERNATIVE
FOR
MATRICES
138
17.
M
IXED
S
TRATEGIES
.
T
HE
S
OLUTION
FOR
A
LL
G
AMES
143
17.1.
DISCUSSION
OF
TWO
ELEMENTARY
EXAMPLES
143
17.2.
GENERALISATION
OF
THIS
VIEWPOINT
145
17.3.
JUSTIFICATION
OF
THE
PROCEDURE
AS
APPLIED
TO
AN
INDIVIDUAL
PLAY
146
17.4.
THE
MINORANT
AND
THE
MAJORANT
GAMES.
(FOR
MIXED
STRATEGIES)
149
17.5.
GENERAL
STRICT
DETERMINATENESS
150
17.6.
PROOF
OF
THE
MAIN
THEOREM
153
17.7.
COMPARISON
OF
THE
TREATMENT
BY
PURE
AND
BY
MIXED
STRATEGIES
155
17.8.
ANALYSIS
OF
GENERAL
STRICT
DETERMINATENESS
158
17.9.
FUERTHER
CHARACTERISTICS
OF
GOOD
STRATEGIES
160
17.10.
MISTAKES
AND
THEIR
CONSEQUENCES.
PERMANENT
OPTIMAHTY
162
17.11.
THE
INTERCHANGE
OF
PLAYERS.
SYMMETRY
165
CHAPTER
IV
ZERO-SUM
TWO-PERSON
GAMES:
EXAMPLES
18.
S
OME
E
LEMENTARY
G
AMES
169
18.1.
THE
SIMPLEST
GAMES
169
18.2.
DETAILED
QUANTITATIVE
DISCUSSION
OF
THESE
GAMES
170
18.3.
QUALITATIVE
CHARACTERIZATIONS
173
18.4.
DISCUSSION
OF
SOME
SPECIFIC
GAMES.
(GENERALIZED
FORMS
OF
MATCHING
PENNIES)
175
18.5.
DISCUSSION
OF
SOME
SLIGHTLY
MORE
COMPLICATED
GAMES
178
18.6.
CHANCE
AND
IMPERFECT
INFORMATION
182
18.7.
INTERPRETATION
OF
THIS
RESULT
185
*19.
P
OKER
AND
B
LUFFING
186
*19.1.
DESCRIPTION
OF
POKER
186
*19.2.
BLUFFING
188
*19.3.
DESCRIPTION
OF
POKER
(CONTINUED)
189
*19.4.
EXACT
FORMULATION
OF
THE
RULES
190
XII
CONTENTS
*19.5.
DESCRIPTION
OF
THE
STRATEGY
191
*19.6.
STATEMENT
OF
THE
PROBLEM
195
*19.7.
PASSAGE
FROM
THE
DISCRETE
TO
THE
CONTINUOUS
PROBLEM
196
*19.8.
MATHEMATICAL
DETERMINATION
OF
THE
SOLUTION
199
*19.9.
DETAILED
ANALYSIS
OF
THE
SOLUTION
202
*19.10.
INTERPRETATION
OF
THE
SOLUTION
204
*19.11.
MORE
GENERAL
FORMS
OF
POKER
207
*19.12.
DISCRETE
HANDS
208
*19.13.
M
POSSIBLE
BIDS
209
*19.14.
ALTERNATE
BIDDING
211
*19.15.
MATHEMATICAL
DESCRIPTION
OF
ALL
SOLUTIONS
216
*19.16.
INTERPRETATION
OF
THE
SOLUTIONS.
CONCLUSIONS
218
CHAPTER
V
ZERO-SUM
THREE-PERSON
GAMES
20.
P
RELIMINARY
S
URVEY
220
20.1.
GENERAL
VIEWPOINTS
220
20.2.
COALITIONS
221
21.
T
HE
S
IMPLE
M
AJORITY
G
AME
OF
T
HREE
P
ERSONS
222
21.1.
DEFINITION
OF
THE
GAME
222
21.2.
ANALYSIS
OF
THE
GAME:
NECESSITY
OF
"
UNDERSTANDINGS
"
223
21.3.
ANALYSIS
OF
THE
GAME:
COALITIONS.
THE
ROLE
OF
SYMMETRY
224
22.
F
UERTHER
E
XAMPLES
225
22.1.
UNSYMMETRIC
DISTRIBUTIONS.
NECESSITY
OF
COMPENSATIONS
225
22.2.
COALITIONS
OF
DIFFERENT
STRENGTH.
DISCUSSION
227
22.3.
AN
INEQUALITY.
FORMULAE
229
23.
T
HE
G
ENERAL
C
ASE
231
23.1.
DETAILED
DISCUSSION.
INESSENTIAL
AND
ESSENTIAL
GAMES
231
23.2.
COMPLETE
FORMULAE
232
24.
D
ISCUSSION
OF
AN
O
BJECTION
233
24.1.
THE
CASE
OF
PERFECT
INFORMATION
AND
ITS
SIGNIFICANCE
233
24.2.
DETAILED
DISCUSSION.
NECESSITY
OF
COMPENSATIONS
BETWEEN
THREE
OR
MORE
PLAYERS
235
CHAPTER
VI
FORMULATION
OF
THE
GENERAL
THEORY:
ZERO-SUM
N-PERSON
GAMES
-
25.
T
HE
C
HARACTERISTIC
F
UNCTION
238
25.1.
MOTIVATION
AND
DEFINITION
238
25.2.
DISCUSSION
OF
THE
CONCEPT
240
25.3.
FUNDAMENTAL
PROPERTIES
241
25.4.
IMMEDIATE
MATHEMATICAL
CONSEQUENCES
242
26.
C
ONSTRUCTION
OF
A
G
AME
WITH
A
G
IVEN
C
HARACTERISTIC
F
UNCTION
243
26.1.
THE
CONSTRUCTION
26.2.
SUMMARY
243
245
CONTENTS
XIII
27.
S
TRATEGIC
E
QUIVALENCE
.
I
NESSENTIAL
AND
E
SSENTIAL
G
AMES
245
27.1.
STRATEGIC
EQUIVALENCE.
THE
REDUCED
FORM
245
27.2.
INEQUALITIES.
THE
QUANTITY
Y
248
27.3.
INESSENTIALITY
AND
ESSENTIALITY
249
27.4.
VARIOUS
CRITERIA.
NON
ADDITIVE
UTILITIES
250
27.5.
THE
INEQUALITIES
IN
THE
ESSENTIAL
CASE
252
27.6.
VECTOR
OPERATIONS
ON
CHARACTERISTIC
FUNCTIONS
253
28.
G
ROUPS
,
S
YMMETRY
AND
F
AIRNESS
255
28.1.
PERMUTATIONS,
THEIR
GROUPS
AND
THEIR
EFFECT
ON
A
GAME
255
28.2.
SYMMETRY
AND
FAIRNESS
258
29.
R
ECONSIDERATION
OF
THE
Z
ERO
-S
UM
T
HREE
-P
ERSON
G
AME
260
29.1.
QUALITATIVE
DISCUSSION
260
29.2.
QUANTITATIVE
DISCUSSION
262
30.
T
HE
E
XACT
F
ORM
OF
THE
G
ENERAL
D
EFINITIONS
263
30.1.
THE
DEFINITIONS
263
30.2.
DISCUSSION
AND
RECAPITULATION
265
*30.3.
THE
CONCEPT
OF
SATURATION
266
30.4.
THREE
IMMEDIATE
OBJECTIVES
271
31.
F
IRST
C
ONSEQUENCES
272
31.1.
CONVEXITY,
FLATNESS,
AND
SOME
CRITERIA
FOR
DOMINATION
272
31.2.
THE
SYSTEM
OF
ALL
IMPUTATIONS.
ONE
ELEMENT
SOLUTIONS
277
31.3.
THE
ISOMORPHISM
WHICH
CORRESPONDS
TO
STRATEGIC
EQUIVALENCE
281
32.
D
ETERMINATION
OF
A
LL
S
OLUTIONS
OF
THE
E
SSENTIAL
Z
ERO
-S
UM
T
HREE
-P
ERSON
G
AME
282
32.1.
FORMULATION
OF
THE
MATHEMATICAL
PROBLEM.
THE
GRAPHICAL
METHOD
282
32.2.
DETERMINATION
OF
ALL
SOLUTIONS
285
33.
C
ONCLUSIONS
288
33.1.
THE
MULTIPLICITY
OF
SOLUTIONS.
DISCRIMINATION
AND
ITS
MEANING
'
288
33.2.
STATICS
AND
DYNAMICS
290
CHAPTER
VII
ZERO-SUM
FOUR-PERSON
GAMES
34.
P
RELIMINARY
S
URVEY
291
34.1.
GENERALVIEWPOINTS
291
34.2.
FORMALISM
OF
THE
ESSENTIAL
ZERO
SUM
FOUR
PERSON
GAMES
291
34.3.
PERMUTATIONS
OF
THE
PLAYERS
294
35.
D
ISCUSSION
OF
S
OME
S
PECIAL
P
OINTS
IN
THE
C
UBE
Q
295
35.1.
THE
CORNER
I.
(AND
V.,
VI.,
VII.)
295
35.2.
THE
CORNER
VIII.
(AND
II.,
III.,
IV.,).
THE
THREE
PERSON
GAME
AND
A
"
DUMMY
"
299
35.3.
SOME
REMARKS
CONCERNING
THE
INTERIOR
OF
Q
302
36.
D
ISCUSSION
OF
THE
M
AIN
D
IAGONALS
304
36.1.
THE
PART
ADJACENT
TO
THE
CORNER
VIII.
'
.
HEURISTIC
DISCUSSION
304
36.2.
THE
PART
ADJACENT
TO
THE
CORNER
VIII.
'
.
EXACT
DISCUSSION
307
*36.3.
OTHER
PARTS
OF
THE
MAIN
DIAGONALE
312
XIV
CONTENTS
37.
T
HE
C
ENTER
AND
I
TS
E
NVIRONS
313
37.1.
FIRST
ORIENTATION
ABOUT
THE
CONDITIONS
AROUND
THE
CENTER
313
37.2.
THE
TWO
ALTERNATIVES
AND
THE
ROLE
OF
SYMMETRY
315
37.3.
THE
FIRST
ALTERNATIVE
AT
THE
CENTER
316
37.4.
THE
SECOND
ALTERNATIVE
AT
THE
CENTER
317
37.5.
COMPARISON
OF
THE
TWO
CENTRAL
SOLUTIONS
318
37.6.
UNSYMMETRICAL
CENTRAL
SOLUTIONS
319
*38.
A
F
AMILY
OF
S
OLUTIONS
FOR
A
N
EIGHBORHOOD
OF
THE
C
ENTER
321
*38.1.
TRANSFORMATION
OF
THE
SOLUTION
BELONGING
TO
THE
FIRST
ALTERNATIVE
AT
THE
CENTER
321
*38.2.
EXACT
DISCUSSION
322
*38.3.
INTERPRETATION
OF
THE
SOLUTIONS
327
CHAPTER
VIII
SOME
REMARKS
CONCERNING
N
5
PARTICIPANTS
39.
T
HE
N
UMBER
OF
P
ARAMETERS
IN
V
ARIOUS
C
LASSES
OF
G
AMES
330
39.1.
THE
SITUATION
FOR
N
=
3,
4
330
39.2.
THE
SITUATION
FOR
ALL
N
AE
3
330
40.
T
HE
S
YMMETRIC
F
IVE
P
ERSON
G
AME
332
40.1.
FORMALISM
OF
THE
SYMMETRIC
FIVE
PERSON
GAME
332
40.2.
THE
TWO
EXTREME
CASES
332
40.3.
CONNECTION
BETWEEN
THE
SYMMETRIC
FIVE
PERSON
GAME
AND
THE
1,
2,
3
SYMMETRIC
FOUR
PERSON
GAME
334
CHAPTER
IX
COMPOSITION
AND
DECOMPOSITION
OF
GAMES
41.
COMPOSITION
AND
D
ECOMPOSITION
339
41.1.
SEARCH
FOR
N-PERSON
GAMES
FOR
WHICH
ALL
SOLUTIONS
CAN
BE
DETERMINED
339
41.2.
THE
FIRST
TYPE.
COMPOSITION
AND
DECOMPOSITION
340
41.3.
EXACT
DEFINITIONS
341
41.4.
ANALYSIS
OF
DECOMPOSABILITY
343
41.5.
DESIRABILITY
OF
A
MODIFICATION
345
42.
M
ODIFICATION
OF
THE
T
HEORY
345
42.1.
NO
COMPLETE
ABANDONMENT
OF
THE
ZERO
SUM
RESTRICTION
345
42.2.
STRATEGIE
EQUIVALENCE.
CONSTANT
SUM
GAMES
346
42.3.
THE
CHARACTERISTIC
FUNCTION
IN
THE
NEW
THEORY
348
42.4.
IMPUTATIONS,
DOMINATION,
SOLUTIONS
IN
THE
NEW
THEORY
350
42.5.
ESSENTIALITY,
INESSENTIALITY
AND
DECOMPOSABILITY
IN
THE
NEW
THEORY
351
43.
T
HE
D
ECOMPOSITION
P
ARTITION
353
43.1.
SPLITTING
SETS.
CONSTITUENTS
353
43.2.
PROPERTIES
OF
THE
SYSTEM
OF
ALL
SPLITTING
SETS
353
43.3.
CHARACTERIZATION
OF
THE
SYSTEM
OF
ALL
SPLITTING
SETS.
THE
DECOMPOSI
TION
PARTITION
354
43.4.
PROPERTIES
OF
THE
DECOMPOSITION
PARTITION
357
44.
D
ECOMPOSABLE
G
AMES
.
F
UERTHER
E
XTENSION
OF
THE
T
HEORY
358
44.1.
SOLUTIONS
OF
A
(DECOMPOSABLE)
GAME
AND
SOLUTIONS
OF
ITS
CONSTITUENTS
358
44.2.
COMPOSITION
AND
DECOMPOSITION
OF
IMPUTATIONS
AND
OF
SETS
OF
IMPU
TATIONS
359
45.
46.
47.
CONTENTS
XV
44.3.
COMPOSITION
AND
DECOMPOSITION
OF
SOLUTIONS.
THE
MAIN
POSSIBILITIES
AND
SURMISES
361
44.4.
EXTENSION
OF
THE
THEORY.
OUTSIDE
SOURCES
363
44.5.
THE
EXCESS
364
44.6.
LIMITATIONS
OF
THE
EXCESS.
THE
NON-ISOLATED
CHARACTER
OF
A
GAME
IN
THE
NEW
SETUP
366
44.7.
DISCUSSION
OF
THE
NEW
SETUP.
E(E
0
),
E(E)
367
LLMITATIONS
OF
THE
EXCESS.
S
T
RUCTURE
OF
THE
E
X
TENDED
T
HEORY
368
45.1.
THE
LOWER
LIMIT
OF
THE
EXCESS
368
45.2.
THE
UPPER
LIMIT
OF
THE
EXCESS.
DETACHED
AND
FULLY
DETACHED
IMPUTA
TIONS
369
45.3.
DISCUSSION
OF
THE
TWO
LIMITS,
|R|I,
|R|
S
.
THEIR
RATIO
372
45.4.
DETACHED
IMPUTATIONS
AND
VARIOUS
SOLUTIONS.
THE
THEOREM
CON
NECTING
E(EO),
F(E)
375
45.5.
PROOF
OF
THE
THEOREM
376
45.6.
SUMMARY
AND
CONCLUSIONS
380
D
ETERMINATION
OF
A
LL
S
OLUTIONS
OF
A
D
ECOMPOSABLE
G
AME
381
46.1.
ELEMENTARY
PROPERTIES
OF
DECOMPOSITIONS
381
46.2.
DECOMPOSITION
AND
ITS
RELATION
TO
THE
SOLUTIONS:
FIRST
RESULTS
CON
CERNING
F(E
0
)
384
46.3.
CONTINUATION
386
46.4.
CONTINUATION
388
46.5.
THE
COMPLETE
RESULT
IN
F(E
0
)
390
46.6.
THE
COMPLETE
RESULT
IN
E(E
0
)
393
46.7.
GRAPHICAL
REPRESENTATION
OF
A
PART
OF
THE
RESULT
394
46.8.
INTERPRETATION:
THE
NORMAL
ZONE.
HEREDITY
OF
VARIOUS
PROPERTIES
396
46.9.
DUMMIES
397
46.10.
IMBEDDING
OF
A
GAME
398
46.11.
SIGNIFICANCE
OF
THE
NORMAL
ZONE
401
46.12.
FIRST
OCCURRENCE
OF
THE
PHENOMENON
OF
TRANSFER:
N
-
6
402
T
HE
E
SSENTIAL
T
HREE
-P
ERSON
G
AME
IN
THE
N
EW
T
HEORY
403
47.1.
NEED
FOR
THIS
DISCUSSION
403
47.2.
PREPARATORY
CONSIDERATIONS
403
47.3.
THE
SIX
CASES
OF
THE
DISCUSSION.
CASES
(I)
-
(III)
406
47.4.
CASE
(IV)
:
FIRST
PART
407
47.5.
CASE
(IV):
SECOND
PART
409
47.6.
CASE
(V)
413
47.7.
CASE
(VI)
415
47.8.
INTERPRETATION
OF
THE
RESULT:
THE
CURVES
(ONE
DIMENSIONAL
PARTS)
IN
THE
SOLUTION
416
47.9.
CONTINUATION:
THE
AREAS
(TWO
DIMENSIONAL
PARTS)
IN
THE
SOLUTION
418
CHARTER
X
SIMPLE
GAMES
48.
WLNNING
AND
LOESING
COALITIONS
AND
GAMES
W
H
ERE
THEY
OCCUR
48.1.
THE
SECOND
TYPE
OF
41.1.
DECISION
BY
COALITIONS
48.2.
WINNING
AND
LOESING
COALITIONS
420
420
421
XVI
CONTENTS
49.
C
HARACTERIZATION
OF
THE
S
IMPLE
G
AMES
423
49.1.
GENERAL
EONCEPTS
OF
WINNING
AND
LOSING
COALITIONS
423
49.2.
THE
SPECIAL
ROLE
OF
ONE
ELEMENT
SETS
425
49.3.
CHARACTERIZATION
OF
THE
SYSTEMS
W,
L
OF
ACTUAL
GAMES
426
49.4.
EXACT
DEFINITION
OF
SIMPLICITY
428
49.5.
SOME
ELEMENTARY
PROPERTIES
OF
SIMPLICITY
428
49.6.
SIMPLE
GAMES
AND
THEIR
W,
L.
THE
MINIMAL
WINNING
COALITIONS:
W
M
429
49.7.
THE
SOLUTIONS
OF
SIMPLE
GAMES
430
50.
T
HE
M
AJORITY
G
AMES
AND
THE
M
AIN
S
OLUTION
431
50.1.
EXAMPLES
OF
SIMPLE
GAMES:
THE
MAJORITY
GAMES
431
50.2.
HOMOGENEITY
433
50.3.
A
MORE
DIRECT
USE
OF
THE
CONCEPT
OF
IMPUTATION
IN
FORMING
SOLUTIONS
435
50.4.
DISCUSSION
OF
THIS
DIRECT
APPROACH
436
50.5.
CONNECTIONS
WITH
THE
GENERAL
THEORY.
EXACT
FORMULATION
438
50.6.
REFORMULATION
OF
THE
RESULT
440
50.7.
INTERPRETATION
OF
THE
RESULT
442
50.8.
CONNECTION
WITH
THE
HOMOGENEOUS
MAJORITY
GAMES
443
51.
M
ETHODS
FOR
THE
E
NUMERATION
OF
A
LL
S
IMPLE
G
AMES
445
51.1.
PRELIMINARY
REMARKS
445
51.2.
THE
SATURATION
METHOD:
ENUMERATION
BY
MEANS
OF
W
446
51.3.
REASONS
FOR
PASSING
FROM
W
TO
W
M
.
DIFFICULTIES
OF
USING
W
M
448
51.4.
CHANGED
APPROACH:
ENUMERATION
BY
MEANS
OF
W
M
450
51.5.
SIMPLICITY
AND
DECOMPOSITION
452
51.6.
INESSENTIALITY,
SIMPLICITY
AND
COMPOSITION.
TREATMENT
OF
THE
EXCESS
454
51.7.
A
CRITERIUM
OF
DECOMPOSABILITY
IN
TERMS
OF
W
M
455
52.
T
HE
S
IMPLE
G
AMES
FOR
S
MALL
N
457
52.1.
PROGRAM,
N
=
1,
2
PLAY
NO
ROLE.
DISPOSAL
OF
N
=
3
457
52.2.
PROCEDURE
FOR
N
AE
4:
THE
TWO
ELEMENT
SETS
AND
THEIR
ROLE
IN
CLASSIFY-
ING
THE
W
M
458
52.3.
DECOMPOSABILITY
OF
CASES
C*,
C
N
-I,
C
N
-I
459
52.4.
THE
SIMPLE
GAMES
OTHER
THAN
[1,
YY
YY
YY
,
1,
N
-
2]*
(WITH
DUMMIES):
|
A
THE
CASES
C
K
,
K
=
0,
1,
YY
YY
YY
,
N
-
3
461
IT52.5.
DISPOSAL
OF
N
=
4,
5
462
53.
T
HE
N
EW
P
OSSIBILITIES
OF
S
IMPLE
G
AMES
FOR
N
6
463
53.1.
THE
REGULARITIES
OBSERVED
FOR
N
AE
6
463
53.2.
THE
SIX
MAIN
COUNTER
EXAMPLES
(FOR
N
=
6,
7)
464
54.
D
ETERMINATION
OF
A
LL
S
OLUTIONS
IN
S
UITABLE
G
AMES
470
54.1.
REASONS
TO
CONSIDER
OTHER
SOLUTIONS
THAN
THE
MAIN
SOLUTION
IN
SIMPLE
GAMES
470
54.2.
ENUMERATION
OF
THOSE
GAMES
FOR
WHICH
ALL
SOLUTIONS
ARE
KNOWN
471
54.3.
REASONS
TO
CONSIDER
THE
SIMPLE
GAME
[1,
YY
YY
YY
,
1,
N
-
2]*
472
*55.
T
HE
S
IMPLE
G
AME
[1,
YY
YY
YY
,
1,
N
-
2]*
473
*55.1.
PRELIMINARY
REMARKS
473
*55.2.
DOMINATION.
THE
CHIEF
PLAYER.
CASES
(I)
AND
(II)
473
*55.3.
DISPOSAL
OF
CASE
(I)
475
*55.4.
CASE
(II)
:
DETERMINATION
OF
Y
478
*55.5.
CASE
(II)
:
DETERMINATION
OF
V
481
*55.6.
CASE
(II)
:
A
AND
S
484
CONTENTS
XVII
*55.7.
CASE
(II')
AND
(II").
DISPOSAL
OF
CASE
(II')
485
*55.8.
CASE
(II"):
8
AND
V'.
DOMINATION
487
*55.9.
CASE
(II")
:
DETERMINATION
OF
V'
488
*55.10.
DISPOSAL
OF
CASE
(II")
494
*55.11.
REFORMULATION
OF
THE
COMPLETE
RESULT
497
*55.12.
INTERPRETATION
OF
THE
RESULT
499
CHAPTER
XI
GENERAL
NON-ZERO-SUM
GAMES
56.
E
XTENSION
OF
THE
T
HEORY
504
56.1.
FORMULATION
OF
THE
PROBLEM
504
56.2.
THE
FICTITIOUS
PLAYER.
THE
ZERO
SUM
EXTENSION
R
505
56.3.
QUESTIONS
CONCERNING
THE
CHARACTER
OF
R
506
56.4.
LIMITATIONS
OF
THE
USE
OF
R
508
56.5.
THE
TWO
POSSIBLE
PROCEDURES
510
56.6.
THE
DISCRIMINATORY
SOLUTIONS
511
56.7.
ALTERNATIVE
POSSIBILITIES
512
56.8.
THE
NEW
SETUP
514
56.9.
RECONSIDERATION
OF
THE
CASE
WHEN
R
IS
A
ZERO
SUM
GAME
516
56.10.
ANALYSIS
OF
THE
CONCEPT
OF
DOMINATION
520
56.11.
RIGOROUS
DISCUSSION
523
56.12.
THE
NEW
DEFINITION
OF
A
SOLUTION
526
57.
T
HE
C
HARACTERISTIC
F
UNCTION
AND
R
ELATED
T
OPICS
527
57.1.
THE
CHARACTERISTIC
FUNCTION:
THE
EXTENDED
AND
THE
RESTRICTED
FORM
527
57.2.
FUNDAMENTAL
PROPERTIES
528
57.3.
DETERMINATION
OF
ALL
CHARACTERISTIC
FUNCTIONS
530
57.4.
REMOVABLE
SETS
OF
PLAYERS
533
57.5.
STRATEGIE
EQUIVALENCE.
ZERO-SUM
AND
CONSTANT-SUM
GAMES
535
58.
I
NTERPRETATION
OF
THE
C
HARACTERISTIC
F
UNCTION
538
58.1.
ANALYSIS
OF
THE
DEFINITION
538
58.2.
THE
DESIRE
TO
MAKE
A
GAIN
VS.
THAT
TO
INFLICT
A
LOSS
539
58.3.
DISCUSSION
541
59.
G
ENERAL
C
ONSIDERATIONS
542
59.1.
DISCUSSION
OF
THE
PROGRAM
542
59.2.
THE
REDUCED
FORMS.
THE
INEQUALITIES
543
59.3.
VARIOUS
TOPICS
546
60.
T
HE
S
OLUTIONS
OF
A
LL
G
ENERAL
G
AMES
WITH
N
G
3
548
60.1.
THE
CASE
N
=
1
548
60.2.
THE
CASE
N
=
2
549
60.3.
THE
CASE
N
=
3
550
60.4.
COMPARISON
WITH
THE
ZERO
SUM
GAMES
554
61.
E
CONOMIC
I
NTERPRETATION
OF
THE
R
ESULTS
FOR
N
=
1,
2
555
61.1.
THE
CASE
N
=
1
555
61.2.
THE
CASE
N
=
2.
THE
TWO
PERSON
MARKET
555
61.3.
DISCUSSION
OF
THE
TWO
PERSON
MARKET
AND
ITS
CHARACTERISTIC
FUNCTION
557
61.4.
JUSTIFICATION
OF
THE
STANDPOINT
OF
58
559
61.5.
DIVISIBLE
GOODS.
THE
"
MARGINAL
PAIRS
"
560
61.6.
THE
PRICE.
DISCUSSION
562
XVIII
CONTENTS
62.
E
CONOMIC
I
NTERPRETATION
OF
THE
R
ESULTS
FOR
N
-
3:
S
PECIAL
C
ASE
564
62.1.
THE
CASE
N
=
3,
SPECIAL
CASE.
THE
THREE
PERSON
MARKET
564
62.2.
PRELIMINARY
DISCUSSION
566
62.3.
THE
SOLUTIONS:
FIRST
SUBCASE
566
62.4.
THE
SOLUTIONS:
GENERAL
FORM
569
62.5.
ALGEBRAICAL
FORM
OF
THE
RESULT
570
62.6.
DISCUSSION
571
YY
63.
E
CONOMIC
I
NTERPRETATION
OF
THE
R
ESULTS
FOR
N
=
3:
G
ENERAL
C
ASE
573
63.1.
DIVISIBLE
GOODS
573
63.2.
ANALYSIS
OF
THE
INEQUALITIES
575
63.3.
PRELIMINARY
DISCUSSION
577
63.4.
THE
SOLUTIONS
577
63.5.
ALGEBRAICAL
FORM
OF
THE
RESULT
580
63.6.
DISCUSSION
581
64.
T
HE
G
ENERAL
M
ARKET
583
64.1.
FORMULATION
OF
THE
PROBLEM
583
64.2.
SOME
SPECIAL
PROPERTIES.
MONOPOLY
AND
MONOPSONY
584
CHARTER
XII
EXTENSION
OF
THE
CONCEPTS
OF
DOMINATION
AND
SOLUTION
65.
T
HE
E
XTENSION
.
S
PECIAL
C
ASES
587
65.1.
FORMULATION
OF
THE
PROBLEM
587
65.2.
GENERAL
REMARKS
588
65.3.
ORDERINGS,
TRANSITIVITY,
ACYCLICITY
589
65.4.
THE
SOLUTIONS:
FOR
A
SYMMETRIE
RELATION.
FOR
A
COMPLETE
ORDERING
591
65.5.
THE
SOLUTIONS:
FOR
A
PARTIAL
ORDERING
592
65.6.
ACYCLICITY
AND
STRICT
ACYCLICITY
594
65.7.
THE
SOLUTIONS:
FOR
AN
ACYCLIC
RELATION
597
65.8.
UNIQUENESS
OF
SOLUTIONS,
ACYCLICITY
AND
STRICT
ACYCLICITY
600
65.9.
APPLICATION
TO
GAMES:
DISCRETENESS
AND
CONTINUITY
602
66.
G
ENERALIZATION
OF
THE
C
ONCEPT
OF
U
TILITY
603
66.1.
THE
GENERALIZATION.
THE
TWO
PHASES
OF
THE
THEORETICAL
TREATMENT
603
66.2.
DISCUSSION
OF
THE
FIRST
PHASE
604
66.3.
DISCUSSION
OF
THE
SECOND
PHASE
606
66.4.
DESIRABILITY
OF
UNIFYING
THE
TWO
PHASES
607
67.
D
ISCUSSION
OF
AN
E
XAMPLE
608
67.1.
DESCRIPTION
OF
THE
EXAMPLE
608
67.2.
THE
SOLUTION
AND
ITS
INTERPRETATION
611
67.3.
GENERALIZATION:
DIFFERENT
DISCRETE
UTILITY
SCALES
614
67.4.
CONCLUSIONS
CONCERNING
BARGAINING
616
I
NDEX
OF
F
IGURES
617
I
NDEX
OF
N
AMES
618
I
NDEX
OF
S
UBJECTS
619 |
any_adam_object | 1 |
author | Von Neumann, John 1903-1957 Morgenstern, Oskar 1902-1977 |
author_GND | (DE-588)118770314 (DE-588)118584065 |
author_facet | Von Neumann, John 1903-1957 Morgenstern, Oskar 1902-1977 |
author_role | aut aut |
author_sort | Von Neumann, John 1903-1957 |
author_variant | n j v nj njv o m om |
building | Verbundindex |
bvnumber | BV013910726 |
ctrlnum | (OCoLC)164586822 (DE-599)BVBBV013910726 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cc4500</leader><controlfield tag="001">BV013910726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">010904r2001uuuugw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">962011991</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)164586822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013910726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Von Neumann, John</subfield><subfield code="d">1903-1957</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118770314</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of games and economic behavior</subfield><subfield code="n">[Textbd.].</subfield><subfield code="c">by John VonNeumann, and Oskar Morgenstern</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düsseldorf</subfield><subfield code="b">Verl. Wirtschaft und Finanzen</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 625 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Handelsblatt-Bibliothek "Klassiker der Nationalökonomie"</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Faks.-Ausg. [der Ausg.] Princeton, Princeton Univ. Press, 1944</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morgenstern, Oskar</subfield><subfield code="d">1902-1977</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118584065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013910725</subfield><subfield code="g">Te</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009518049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009518049</subfield></datafield></record></collection> |
id | DE-604.BV013910726 |
illustrated | Illustrated |
indexdate | 2025-01-02T14:51:13Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009518049 |
oclc_num | 164586822 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | XVIII, 625 S. graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Verl. Wirtschaft und Finanzen |
record_format | marc |
series2 | Die Handelsblatt-Bibliothek "Klassiker der Nationalökonomie" |
spelling | Von Neumann, John 1903-1957 Verfasser (DE-588)118770314 aut Theory of games and economic behavior [Textbd.]. by John VonNeumann, and Oskar Morgenstern Düsseldorf Verl. Wirtschaft und Finanzen 2001 XVIII, 625 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Die Handelsblatt-Bibliothek "Klassiker der Nationalökonomie" Faks.-Ausg. [der Ausg.] Princeton, Princeton Univ. Press, 1944 Morgenstern, Oskar 1902-1977 Verfasser (DE-588)118584065 aut (DE-604)BV013910725 Te DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009518049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Von Neumann, John 1903-1957 Morgenstern, Oskar 1902-1977 Theory of games and economic behavior |
title | Theory of games and economic behavior |
title_auth | Theory of games and economic behavior |
title_exact_search | Theory of games and economic behavior |
title_full | Theory of games and economic behavior [Textbd.]. by John VonNeumann, and Oskar Morgenstern |
title_fullStr | Theory of games and economic behavior [Textbd.]. by John VonNeumann, and Oskar Morgenstern |
title_full_unstemmed | Theory of games and economic behavior [Textbd.]. by John VonNeumann, and Oskar Morgenstern |
title_short | Theory of games and economic behavior |
title_sort | theory of games and economic behavior |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009518049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013910725 |
work_keys_str_mv | AT vonneumannjohn theoryofgamesandeconomicbehaviortextbd AT morgensternoskar theoryofgamesandeconomicbehaviortextbd |