Operator approach to linear problems of hydrodynamics 1 Self-adjoint problems for an ideal fluid

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kopačevskij, Nikolaj D. 1940- (VerfasserIn), Krejn, Selim G. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel [u.a.] Birkhäuser 2001
Schriftenreihe:Operator theory 128
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008cc4500
001 BV013824346
003 DE-604
005 20011106
007 t|
008 010710s2001 gw |||| 00||| eng d
016 7 |a 961879297  |2 DE-101 
020 |a 3764354062  |9 3-7643-5406-2 
035 |a (OCoLC)314034989 
035 |a (DE-599)BVBBV013824346 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-355  |a DE-703  |a DE-83  |a DE-11 
050 0 |a TA357.K563413 2001 
082 0 |a 532/.5/01515724 
082 0 |a 532.501515724 
084 |a SK 520  |0 (DE-625)143244:  |2 rvk 
100 1 |a Kopačevskij, Nikolaj D.  |d 1940-  |e Verfasser  |0 (DE-588)123015987  |4 aut 
240 1 0 |a Operatornye metody v linejnoj gidrodinamike 
245 1 0 |a Operator approach to linear problems of hydrodynamics  |n 1  |p Self-adjoint problems for an ideal fluid  |c Nikolay D. Kopachevsky ; Selim G. Krein 
264 1 |a Basel [u.a.]  |b Birkhäuser  |c 2001 
300 |a XXIV, 384 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Operator theory  |v 128 
490 0 |a Operator theory  |v ... 
650 4 |a Mathematisches Modell 
650 4 |a Fluid dynamics  |x Mathematical models 
700 1 |a Krejn, Selim G.  |e Verfasser  |4 aut 
773 0 8 |w (DE-604)BV013824345  |g 1 
830 0 |a Operator theory  |v 128  |w (DE-604)BV000000970  |9 128 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009454398&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009454398 

Datensatz im Suchindex

_version_ 1819653241679380480
adam_text OPERATOR APPROACH TO LINEAR PROBLEMS OF HYDRODYNAMICS VOLUME 1: SELF-ADJOINT PROBLEMS FOR AN IDEAL FLUID NIKOLAY D. KOPACHEVSKY SELIM G. KREIN BIRKHAUSER VERLAG BASEL * BOSTON * BERLIN TABLE OF CONTENTS VOLUME I PREFACE V TABLE OF CONTENTS VOLUME I VII VOLUME II XV INTRODUCTION 1 PART I: MATHEMATICAL FOUNDATIONS OF LINEAR HYDRODYNAMICS 5 CHAPTER 1: OPERATORS ON HILBERT SPACES *; 1.1 GENERAL FACTS 7 1.1.1 THE CONCEPT OF A HILBERT SPACE 7 1.1.2 THE SPACE L 2 (FT) 8 1.1.3 ORTHOGONALITY. PROJECTION ONTO A SUBSPACE 9 1.1.4 EQUIVALENT NORMS 10 1.1.5 LINEAR FUNCTIONAL. RIESZ THEOREM 10 1.1.6 EMBEDDINGS OF SPACES. RIESZ THEOREM FOR EQUIPMENTS . . . 11 1.1.7 ORTHONORMAL SYSTEMS AND BASES 12 1.1.8 BOUNDED LINEAR OPERATORS 12 1.1.9 ADJOINT OPERATORS 14 1.1.10 SELF-ADJOINT OPERATORS 14 1.1.11 SELF-ADJOINT COMPACT OPERATORS 15 1.1.12 COMPACT OPERATORS, S-NUMBERS 16 VIII TABLE OF CONTENTS 1.1.13 RIESZ BASES AND P-BASES 17 1.1.14 DIRECT SUM OF SUBSPACES. INVARIANT SUBSPACES 18 1.1.15 EIGEN- AND ASSOCIATED (ROOT) ELEMENTS. ROOT SUBSPACES . . 19 1.1.16 UNBOUNDED LINEAR OPERATORS 20 1.1.17 RESOLVENT AND SPECTRUM OF A LINEAR OPERATOR 21 1.1.18 CLASSIFICATION OF POINTS IN THE SPECTRUM OF A LINEAR OPERATOR 22 1.1.19 SPECTRUM OF A SELF-ADJOINT OPERATOR. WEYL THEOREM . . . . 23 1.1.20 RIESZ PROJECTIONS 24 1.1.21 SYMMETRIC AND SELF-ADJOINT OPERATORS 25 1.1.22 SPECTRAL DECOMPOSITION OF SELF-ADJOINT OPERATORS. FUNCTIONS OF OPERATORS 26 1.1.23 SPACES WITH DEGENERATE SCALAR PRODUCTS. SEMINORMS . . . . 28 1.1.24 EQUIVALENT CORRECTIONS OF SEMINORMS 29 1.2 SOBOLEV SPACES 29 1.2.1 FINITE FUNCTIONS 30 1.2.2 GENERALIZED DERIVATIVES 30 1.2.3 THE DEFINITION OF SOBOLEV SPACES 31 1.2.4 THE SPACE Z4(FI). REGIONS OF THE FIRST TYPE 31 1.2.5 THE SUBSPACEIJG 1 ^) 32 1.2.6 EMBEDDING H 1 ^) INTO L 2 (FI). REGIONS OF THE SECOND TYPE 34 1.2.7 THE TRACE OPERATOR. REGIONS OF THE THIRD TYPE 34 1.3 SPACES WITH INDEFINITE METRICS 35 1.3.1 J-SPACES 35 1.3.2 UNIFORMLY DEFINITE SUBSPACES 37 1.3.3 J-ORTHONORMAL SYSTEMS AND BASES 37 1.3.4 LINEAR OPERATORS ON J-SPACES 38 1.3.5 INVARIANT SUBSPACES OF J-SELF-ADJOINT OPERATORS 39 1.3.6 PONTRYAGIN SPACES 39 1.3.7 ON COMPLETENESS AND BASICITY FOR THE SYSTEM OF ROOT ELEMENTS OF A ./-SELF-ADJOINT OPERATOR 41 1.4 EIGENVALUE PROBLEMS 43 1.4.1 OPERATOR B IS THE IDENTITY OPERATOR 43 1.4.2 OPERATOR B IS POSITIVE DEFINITE 44 1.4.3 POSITIVITY CONDITION FOR A MATRIX OPERATOR 47 1.4.4 SIMPLIFYING EQUATIONS WITH AN ALTERNATING OPERATOR . . . . 48 TABLE OF CONTENTS 1.4.5 EQUATIONS IN SPACES WITH INDEFINITE METRICS 49 1.5 EVOLUTION EQUATIONS IN HILBERT SPACES 51 1.5.1 FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS WITH BOUNDED OPERATOR COEFFICIENT 51 1.5.2 THE CAUCHY PROBLEM FOR EQUATIONS WITH UNBOUNDED OPERATORS 52 1.5.3-EQUATIONS WITH A NEGATIVE SELF-ADJOINT OPERATOR 53 1.5.4 EQUATIONS WITH A DISSIPATIVE OPERATOR 54 1.5.5 EQUATIONS WITH PERTURBED OPERATORS 55 1.5.6 STABILITY 56 1.5.7 NONHOMOGENEOUS EQUATIONS 57 1.5.8 LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER 58 1.5.9 VOLTERRA INTEGRAL EQUATIONS 62 1.6 SPECTRAL THEORY OF OPERATOR PENCILS 63 1.6.1 EIGEN- AND ASSOCIATED ELEMENTS OF AN OPERATOR PENCIL . . . 63 1.6.2 ROOT FUNCTIONS 65 1.6.3 FREDHOLM HOLOMORPHIC OPERATOR-VALUED FUNCTIONS 66 1.6.4 LINEAR PENCILS. THEOREMS ON COMPLETENESS OF THE SYSTEM OF EIGEN- AND ASSOCIATED ELEMENTS . . . . . . . . 66 1.6.5 KELDYSH-TYPE N-MULTIPLE COMPLETENESS 68 1.6.6 SPECTRAL FACTORIZATION OF AN OPERATOR PENCIL 69 1.6.7 COMPLETENESS WITH FINITE DEFECT OF A SYSTEM OF EIGEN- AND ASSOCIATED ELEMENTS OF AN OPERATOR-VALUED FUNCTION . * 70 1.6.8 ASYMPTOTIC BEHAVIOR OF BRANCHES OF EIGENVALUES 71 1.6.9 SELF-ADJOINT OPERATOR PENCILS 72 1.6.10 ON RIESZ BASICITY OF THE SYSTEM OF EIGENELEMENTS OF A SELF-ADJOINT OPERATOR-VALUED FUNCTION . 73 1.6.11 VARIATIONAL METHODS FOR INVESTIGATING CONTINUOUS OPERATOR-VALUED FUNCTIONS 75 1.7 ASYMPTOTIC METHODS FOR SOLVING EVOLUTION EQUATIONS WITH A SMALL PARAMETER ATTACHED TO THE DERIVATIVE 76 1.7.1 EQUATIONS WITH A SMALL PARAMETER ATTACHED TO THE DERIVATIVE 77 1.7.2 SPLITTING OF A HOMOGENEOUS EQUATION 78 1.7.3 SOLVABILITY OF COMMUTATOR EQUATIONS 79 1.7.4 ASYMPTOTIC EXPANSIONS OF SOLUTIONS 82 TABLE OF CONTENTS 1.7.5 THE SPECIAL CASE OF A SPLITABLE OPERATOR KERNEL 86 1.7.6 THE CASE OF A NONSTATIONARY PERTURBATION 87 1.7.7 NONHOMOGENEOUS EQUATIONS 87 1.7.8 EIGENVALUE PROBLEMS 90 1.8 A GENERAL SCHEME FOR SOLVING BOUNDARY VALUE PROBLEMS 93 1.8.1 HILBERT PAIRS. GENERATING OPERATORS 93 1.8.2 HILBERT PAIRS CONNECTED WITH THE SPACES H 1 ^) AND L 2 {Q) 95 1.8.3 HILBERT SCALE OF SPACES. SPACE IT 1 / 2 98 1.8.4 SELF-ADJOINT EXTENSIONS OF POSITIVE DEFINITE SYMMETRIC OPERATORS. GENERALIZED AND WEAK SOLUTIONS OF EQUATIONS . . 99 1.8.5 NONHOMOGENEOUS BOUNDARY VALUE PROBLEMS 101 1.8.6 SPACES OF HARMONIC FUNCTIONS 103 1.8.7 EMBEDDING AND MAPPING. THE ABSTRACT GREEN FORMULA . . . 107 CHAPTER 2: FUNDAMENTAL SPACES AND OPERATORS OF LINEAR HYDRODYNAMICS 2.1 FUNDAMENTAL SPACES AND HYDRODYNAMICS OPERATORS FOR AN IDEAL FLUID 109 2.1.1 FIELDS WITH FINITE KINETIC ENERGY 110 2.1.2 POTENTIAL FIELDS 110 2.1.3 DIVERGENCE OF FIELDS WITH FINITE KINETIC ENERGY ILL 2.1.4 THE SPACE OF SOLENOIDAL FIELDS 112 2.1.5 LAPLACE OPERATOR ON THE SPACE ,H L (Q) 112 2.1.6 NORMAL COMPONENT OF A FIELD OH THE BOUNDARY 113 2.1.7 GREEN FORMULA FOR THE LAPLACE OPERATORS. HARMONIC FIELDS 114 2.1.8 WEYL DECOMPOSITION 115 2.1.9 APPROXIMATION BY SMOOTH FIELDS 116 2.1.10 THE SPACE OF VELOCITY FIELDS FOR AN IDEAL FLUID IN AN OPEN CONTAINER 117 2.1.11 SYSTEMS OF NONMIXING FLUIDS , 118 2.1.12 SPACES OF VELOCITY FIELDS FOR SYSTEMS OF NONMIXING IDEAL FLUIDS 124 2.2 SPACES AND HYDRODYNAMICS OPERATORS FOR A VISCOUS FLUID . . . . 125 2.2.1 FORCES OF INTERNAL FRICTION. ENERGY DISSIPATION . . . . . . . 126 2.2.2 DIVERGENCE OPERATOR. SOLENOIDAL FIELDS 127 2.2.3 VECTOR LAPLACE OPERATOR. GREEN FORMULA 128 TABLE OF CONTENTS XI 2.2.4 MOVEMENT OF A VISCOUS FLUID IN A CLOSED CONTAINER. KORN IDENTITY AND KORN INEQUALITY . 129 2.2.5 STOKES OPERATOR 131 2.2.6 SPACES OF VELOCITY FIELDS FOR A VISCOUS INCOMPRESSIBLE FLUID IN AN OPEN CONTAINER 132 2.2.7 MAIN BOUNDARY VALUE PROBLEMS FOR THE FLUID MOVEMENT IN AN OPEN CONTAINER 134 2.2.8 SPACES OF VELOCITY FIELDS FOR A SYSTEM OF VISCOUS FLUIDS . . . 138 APPENDIX A: REMARKS AND REFERENCE COMMENTS TO PART I A.I CHAPTER 1 143 A.2 CHAPTER 2 146 PART II: MOTION OF BODIES WITH CAVITIES CONTAINING IDEAL FLUIDS . . 149 CHAPTER 3: OSCILLATIONS OF A HEAVY IDEAL FLUID IN STATIONARY AND NONSTATIONARY CONTAINERS 3.1 EQUATIONS OF THE MOTION OF A RIGID BODY WITH A CAVITY FILLED WITH AN INCOMPRESSIBLE FLUID 151 3.1.1 BASIC CONCEPTS OF KINEMATICS 152 3.1.2 EQUATIONS OF MOTION FOR AN INCOMPRESSIBLE FLUID 153 3.1.3 BOUNDARY CONDITIONS 154 3.1.4 MOTION EQUATIONS FOR A GYROSTATE 155 3.1.5 DYNAMICS EQUATIONS OF THE SYSTEM BODY + FLUID I WITH A PARTIALLY FILLED CAVITY 158 3.1.6 TRANSITION TO UNDIMENSIONAL VARIABLES 163 3.2 MOTION OF AN IDEAL FLUID IN A CLOSED STATIONARY CONTAINER . . . . 164 3.2.1 BASIC EQUATIONS 164 3.2.2 EXISTENCE OF SOLUTIONS 165 3.3 SMALL MOVEMENTS OF AN IDEAL FLUID IN AN OPEN IMMOVABLE CONTAINER 166 3.3.1 STATEMENT OF THE PROBLEM AND THE BASIC EQUATIONS 166 3.3.2 PROJECTION OF EULER EQUATIONS 167 3.3.3 EXISTENCE OF SOLUTIONS 168 3.3.4 PROPER OSCILLATIONS 170 3.4 SMALL JOINT MOVEMENTS OF A FLUID AND A CONTAINER 171 3.4.1 STATEMENT OF THE PROBLEM AND THE BASIC EQUATIONS 171 3.4.2 FINDING THE VELOCITY FIELD AND THE PRESSURE 172 XII TABLE OF CONTENTS 3.4.3 DEFINING THE MOTION LAW OF THE BODY 173 3.4.4 ZHUKOVSKY POTENTIALS ... ... . 174 3.5 SMALL JOINT MOVEMENTS AROUND A FIXED POINT OF A BODY AND A FLUID PARTIALLY FILLING THE CAVITY 174 3.5.1 STATEMENT OF THE PROBLEM AND THE BASIC EQUATIONS 175 3.5.2 THE LAW OF FULL ENERGY BALANCE 176 3.5.3 PROJECTING EULER EQUATIONS 177 3.5.4 KINETIC MOMENT EQUATION 178 3.5.5 INVESTIGATING THE COMPLETE SYSTEM OF MOTION EQUATIONS . . 179 3.5.6 PROPER OSCILLATIONS 184 3.5.7 SOLVING THE EVOLUTION PROBLEM 187 3.6 OSCILLATIONS OF A SYSTEM OF FLUIDS IN AN IMMOVABLE CONTAINER . . . 189 3.6.1 STATEMENT OF THE PROBLEM 190 3.6.2 ORTHOGONAL PROJECTION METHOD 191 3.6.3 TRANSITION TO OPERATOR EQUATION 193 3.6.4 PROPER OSCCILATIONS 194 3.6.5 SMALL MOVEMENTS OF STABLE SYSTEMS 196 CHAPTER 4: PROBLEMS ON OSCILLATIONS OF CAPILLARY FLUIDS AND PROBLEMS ON HYDROELASTICITY IN IMMOVABLE CONTAINERS 4.1 OSCILLATIONS OF A CAPILLARY FLUID IN A RIGID CONTAINER 199 4.1.1 ON THE EQUILIBRIUM STATE 200 4.1.2 STATEMENT OF THE PROBLEM ON SMALL OSCILLATIONS 201 4.1.3 LAW OF ENERGY BALANCE 203 4.1.4 TRANSITION TO OPERATOR EQUATION 204 4.1.5 PROPERTIES OF THE POTENTIAL ENERGY OPERATOR 205 4.1.6 PROPER OSCILLATIONS 206 4.1.7 INSTABILITY CONDITIONS OF THE SYSTEM 208 4.1.8 SOLVABILITY OF THE EVOLUTION PROBLEM 208 4.1.9 OSCILLATIONS OF A SYSTEM OF CAPILLARY FLUIDS 209 4.2 OSCILLATIONS OF FLUIDS IN CONTAINERS WITH ELASTIC ENDS 213 4.2.1 SOLVING THE STATIC PROBLEM 213 4.2.2 FORMULATION OF THE PROBLEM ON SMALL OSCILLATIONS 216 4.2.3 ENERGY-PRESERVING LAW 217 4.2.4 OPERATOR EQUATION OF THE PROBLEM 219 4.2.5 PROPERTIES OF THE OPERATORS OF THE PROBLEM 220 4.2.6 PROPER OSCILLATIONS 221 TABJE OF CONTENTS XIII 4.2.7 EVOLUTION PROBLEM 223 4.2.8 OSCILLATIONS OF A FLUID IN A CONTAINER WITH ONE ELASTIC END 224 4.2.9 OSCILLATIONS OF A SYSTEM OF FLUIDS IN A CONTAINER WITH ELASTIC PLANE PARTITIONS 226 4.3 OSCILLATIONS OF A FLUID IN A PARTIALLY FILLED CONTAINER WITH AN ELASTIC BOTTOM 232 4.3.1 DETERMINING THE EQUILIBRIUM STATE 232 4.3.2 FORMULATION OF THE PROBLEM ON SMALL OSCILLATIONS 234 4.3.3 ON SOLVABILITY OF THE EVOLUTION AND SPECTRAL PROBLEMS . . . 234 4.3.4 OSCILLATIONS OF A CAPILLARY FLUID IN A PARTIALLY FILLED ELASTIC CONTAINER 237 4.3.5 SYSTEMS OF HEAVY FLUIDS IN A CONTAINER WITH ELASTIC PLATES 241 4.3.6 SYSTEMS OF CAPILLARY FLUIDS IN A CONTAINER WITH ELASTIC ENDS 244 4.3.7 COMPOUND SYSTEMS OF PLATE-PARTITIONS AND NONMIXING FLUIDS 246 CHAPTER 5: OTHER OPERATOR APPROACHES TO HYDRODYNAMICS PROBLEMS OF IDEAL FLUIDS 5.1 PLANE PROBLEMS ON PROPER OSCILLATIONS OF A HEAVY FLUID IN A CHANNEL. AN APPLICATION OF THE STREAM FUNCTION 249 5.1.1. SPECTRAL PROBLEM FOR THE STREAM FUNCTION 249 5.1.2. PROPERTIES OF NODAL LINES OF STREAM EIGENFUNCTIONS . . . . 252 5.1.3. ESTIMATES OF EIGENVALUES 256 5.2 SHALLOW WATER THEORY IN PROBLEMS ON OSCILLATIONS OF HEAVY IDEAL FLUIDS IN BOUNDED REGIONS 257 5.2.1. FORMULATION OF THE PROBLEM WITH A SMALL PARAMETER . . . . 257 5.2.2. ASYMPTOTIC SOLUTION IN FIRST APPROXIMATION 259 5.2.3. FORMULAS FOR CALCULATING SECOND ORDER APPROXIMATIONS . . 261 5.2.4. PLANE PROBLEMS 263 5.2.5. EXAMPLES 264 5.2.6. SYSTEMS OF NONMIXING FLUIDS 265 5.3 OSCILLATIONS OF A SYSTEM FLUID-GAS IN A BOUNDED REGION . . . . 270 5.3.1. FORMULATION OF THE INITIAL BOUNDARY VALUE PROBLEM . . . . 270 5.3.2. FORMULATION OF THE SPECTRAL PROBLEM 272 XIV TABIE OF CONTENTS 5.3.3. TRANSITION TO A SYSTEM OF OPERATOR EQUATIONS 274 5.3.4 THEOREM ON SPECTRUM 276 5.3.5 VARIATIONAL PRINCIPLES FOR EIGENVALUES 278 CHAPTER 6: OSCILLATIONS OF AN IDEAL ROTATING FLUID 6.1 MOTION OF FLUIDS IN ROTATING CONTAINERS 281 6.1.1 STATEMENT OF THE PROBLEM AND THE MAIN EQUATIONS 281 6.1.2. EXISTENCE OF SOLUTIONS 282 6.1.3 NORMAL OSCILLATIONS 284 6.2 MOTION OF A GYROSTATE SIMILAR TO UNIFORM ROTATION ABOUT A FIXED AXIS 287 6.2.1 STATEMENT OF THE PROBLEM 287 6.2.2 TRANSITION TO THE EVOLUTION EQUATION IN A HILBERT SPACE . . . 288 6.2.3 PROPERTIES OF THE OPERATORS IN THE PROBLEM 289 6.2.4 EXISTENCE OF SOLUTION TO THE BOUNDARY VALUE PROBLEM . . . . 289 6.3 ROTATION OF A FLUID IN A PARTIALLY FILLED CONTAINER 290 6.3.1 ON THE EQUILIBRIUM STATE 290 6.3.2 STATEMENT OF THE PROBLEM ON SMALL OSCILLATIONS 292 6.3.3 METHOD OF ORTHOGONAL PROJECTION . 294 6.3.4 PROPERTIES OF THE OPERATORS OF THE PROBLEM 297 6.3.5 SYSTEMS OF NONMIXING FLUIDS 299 6.3.6 TRANSITION TO AN OPERATOR EQUATION AND PROPERTIES OF THE OPERATORS OF THE PROBLEM 302 6.4 SOLVING THE INITIAL BOUNDARY VALUE PROBLEM 310 6.4.1 GENERALIZED SOLUTION OF THE OPERATOR EQUATION 310 6.4.2 SMALL MOVEMENTS OF FLUID IN A PARTIALLY FILLED CONTAINER . . 313 6.4.3 ON THE STRUCTURE OF THE SPECTRUM OF A VORTICAL OPERATOR . . 313 6.4.4 CLASSES OF FREE MOVEMENTS 316 6.4.5 FREE MOVEMENTS OF A SYSTEM OF FLUIDS 318 6.5 SELF-ADJOINT OPERATOR PENCILS GENERATED BY PROBLEMS ON OSCILLATIONS OF A ROTATING IDEAL FLUID 321 6.5.1 THE MAIN OPERATOR PENCIL 321 6.5.2 ON THE SPECTRUM OF THE OPERATOR PENCIL 322 6.5.3 OPERATOR PENCILS WITH ANALYTIC PERTURBATIONS 323 6.5.4 FACTORIZATION OF THE OPERATOR PENCIL . . 325 6.5.5 SYSTEMS OF EIGENELEMENTS WITH DEFECT BASICITY 327 TABLE OF CONTENTS XV 6.5.6 DOUBLE-SIDED ESTIMATES OF POSITIVE AND NEGATIVE EIGENVALUES . 328 6.5.7 ON THE ESSENTIAL SPECTRUM OF THE PROBLEM 331 6.6 PROPER OSCILLATIONS OF A ROTATING FLUID 333 6.6.1 SURFACE AND INTERNAL WAVES 333 6.6.2 PROPERTIES OF THE SURFACE WAVES 335 6.6.3 ON EXISTENCE AND PROPERTIES OF INTERNAL WAVES 338 6.6.4 OSCILLATIONS OF A SYSTEM OF NONMIXING FLUIDS 341 APPENDIX B: REMARKS AND REFERENCE COMMENTS TO PART II B.I CHAPTER 3 345 B.2 CHAPTER 4 347 B.3 CHAPTER 5 350 B.4 CHAPTER 6 350 STANDARD REFERENCE TEXTS 355 BIBLIOGRAPHY 357 LIST OF SYMBOLS . . . . 375 SUBJECT INDEX 379
any_adam_object 1
author Kopačevskij, Nikolaj D. 1940-
Krejn, Selim G.
author_GND (DE-588)123015987
author_facet Kopačevskij, Nikolaj D. 1940-
Krejn, Selim G.
author_role aut
aut
author_sort Kopačevskij, Nikolaj D. 1940-
author_variant n d k nd ndk
s g k sg sgk
building Verbundindex
bvnumber BV013824346
callnumber-first T - Technology
callnumber-label TA357
callnumber-raw TA357.K563413 2001
callnumber-search TA357.K563413 2001
callnumber-sort TA 3357 K563413 42001
callnumber-subject TA - General and Civil Engineering
classification_rvk SK 520
ctrlnum (OCoLC)314034989
(DE-599)BVBBV013824346
dewey-full 532/.5/01515724
532.501515724
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 532 - Fluid mechanics
dewey-raw 532/.5/01515724
532.501515724
dewey-search 532/.5/01515724
532.501515724
dewey-sort 3532 15 71515724
dewey-tens 530 - Physics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01659nam a22004338cc4500</leader><controlfield tag="001">BV013824346</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20011106 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">010710s2001 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">961879297</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764354062</subfield><subfield code="9">3-7643-5406-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314034989</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013824346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA357.K563413 2001</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.5/01515724</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532.501515724</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kopačevskij, Nikolaj D.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123015987</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Operatornye metody v linejnoj gidrodinamike</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operator approach to linear problems of hydrodynamics</subfield><subfield code="n">1</subfield><subfield code="p">Self-adjoint problems for an ideal fluid</subfield><subfield code="c">Nikolay D. Kopachevsky ; Selim G. Krein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 384 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">128</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krejn, Selim G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV013824345</subfield><subfield code="g">1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator theory</subfield><subfield code="v">128</subfield><subfield code="w">(DE-604)BV000000970</subfield><subfield code="9">128</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009454398&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009454398</subfield></datafield></record></collection>
id DE-604.BV013824346
illustrated Not Illustrated
indexdate 2024-12-23T15:39:31Z
institution BVB
isbn 3764354062
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009454398
oclc_num 314034989
open_access_boolean
owner DE-355
DE-BY-UBR
DE-703
DE-83
DE-11
owner_facet DE-355
DE-BY-UBR
DE-703
DE-83
DE-11
physical XXIV, 384 S.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Birkhäuser
record_format marc
series Operator theory
series2 Operator theory
spellingShingle Kopačevskij, Nikolaj D. 1940-
Krejn, Selim G.
Operator approach to linear problems of hydrodynamics
Operator theory
Mathematisches Modell
Fluid dynamics Mathematical models
title Operator approach to linear problems of hydrodynamics
title_alt Operatornye metody v linejnoj gidrodinamike
title_auth Operator approach to linear problems of hydrodynamics
title_exact_search Operator approach to linear problems of hydrodynamics
title_full Operator approach to linear problems of hydrodynamics 1 Self-adjoint problems for an ideal fluid Nikolay D. Kopachevsky ; Selim G. Krein
title_fullStr Operator approach to linear problems of hydrodynamics 1 Self-adjoint problems for an ideal fluid Nikolay D. Kopachevsky ; Selim G. Krein
title_full_unstemmed Operator approach to linear problems of hydrodynamics 1 Self-adjoint problems for an ideal fluid Nikolay D. Kopachevsky ; Selim G. Krein
title_short Operator approach to linear problems of hydrodynamics
title_sort operator approach to linear problems of hydrodynamics self adjoint problems for an ideal fluid
topic Mathematisches Modell
Fluid dynamics Mathematical models
topic_facet Mathematisches Modell
Fluid dynamics Mathematical models
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009454398&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV013824345
(DE-604)BV000000970
work_keys_str_mv AT kopacevskijnikolajd operatornyemetodyvlinejnojgidrodinamike
AT krejnselimg operatornyemetodyvlinejnojgidrodinamike
AT kopacevskijnikolajd operatorapproachtolinearproblemsofhydrodynamics1
AT krejnselimg operatorapproachtolinearproblemsofhydrodynamics1