Independent component analysis

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hyvärinen, Aapo (VerfasserIn), Karhunen, Juha (VerfasserIn), Oja, Erkki (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Wiley 2001
Schriftenreihe:Adaptive and learning systems for signal processing, communications, and control
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV013819390
003 DE-604
005 20150309
007 t|
008 010716s2001 xx ad|| |||| 00||| eng d
020 |a 047140540X  |9 0-471-40540-X 
035 |a (OCoLC)248365948 
035 |a (DE-599)BVBBV013819390 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-703  |a DE-29T  |a DE-91  |a DE-M347  |a DE-384  |a DE-739  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA278 
082 0 |a 519.5/35 
084 |a QH 234  |0 (DE-625)141549:  |2 rvk 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
084 |a DAT 780f  |2 stub 
084 |a DAT 717f  |2 stub 
100 1 |a Hyvärinen, Aapo  |e Verfasser  |0 (DE-588)1055801146  |4 aut 
245 1 0 |a Independent component analysis  |c Aapo Hyvärinen ; Juha Karhunen ; Erkki Oja 
264 1 |a New York [u.a.]  |b Wiley  |c 2001 
300 |a XXI, 481 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Adaptive and learning systems for signal processing, communications, and control 
650 4 |a Analyse en composantes principales 
650 7 |a Analyse en composantes principales  |2 ram 
650 4 |a Analyse multivariée 
650 7 |a Analyse multivariée  |2 ram 
650 7 |a analyse composante indépendante  |2 inriac 
650 7 |a corrélation  |2 inriac 
650 7 |a déconvolution  |2 inriac 
650 7 |a maximum vraisemblance  |2 inriac 
650 7 |a modèle non gaussien  |2 inriac 
650 7 |a tenseur  |2 inriac 
650 7 |a théorie estimation  |2 inriac 
650 0 7 |a Komponentenanalyse  |0 (DE-588)4133251-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Signalverarbeitung  |0 (DE-588)4054947-1  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Komponentenanalyse  |0 (DE-588)4133251-9  |D s 
689 0 1 |a Signalverarbeitung  |0 (DE-588)4054947-1  |D s 
689 0 |5 DE-604 
700 1 |a Karhunen, Juha  |e Verfasser  |0 (DE-588)101121119X  |4 aut 
700 1 |a Oja, Erkki  |e Verfasser  |4 aut 
856 4 2 |m Digitalisierung UB Passau  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009450085&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009450085 

Datensatz im Suchindex

DE-BY-TUM_call_number 0003 DAT 717 L 3593
0004 DAT 717f 08.2002 A 251
DE-BY-TUM_katkey 1321207
DE-BY-TUM_location 00
DE-BY-TUM_media_number 040005301433
040005301466
040005301477
040005131153
DE-BY-UBR_call_number 8430/SK 830 H999
DE-BY-UBR_katkey 3182372
DE-BY-UBR_media_number TEMP11720673
_version_ 1822685372782477312
adam_text Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle 3 1.2 Blind source separation 3 1.2.1 Observing mixtures of unknown signals 4 1.2.2 Source separation based on independence 5 1.3 Independent component analysis 6 1.3.1 Definition 6 1.3.2 Applications 7 1.3.3 How to find the independent components 7 1.4 History of ICA 11 Vi CONTENTS Part I MATHEMATICAL PRELIMINARIES 2 Random Vectors and Independence 15 2.1 Probability distributions and densities 15 2.1.1 Distribution of a random variable 15 2.1.2 Distribution of a random vector 17 2.1.3 Joint and marginal distributions 18 2.2 Expectations and moments 19 2.2.1 Definition and general properties 19 2.2.2 Mean vector and correlation matrix 20 2.2.3 Covariances and joint moments 22 2.2.4 Estimation of expectations 24 2.3 Uncorrelatedness and independence 24 2.3.1 Uncorrelatedness and whiteness 24 2.3.2 Statistical independence 27 2.4 Conditional densities and Bayes rule 28 2.5 The multivariate gaussian density 31 2.5.1 Properties of the gaussian density 32 2.5.2 Central limit theorem 34 2.6 Density of a transformation 35 2.7 Higher-order statistics 36 2.7.1 Kurtosis and classification of densities 37 2.7.2 Cumulants, moments, and their properties 40 2.8 Stochastic processes * 43 2.8.1 Introduction and definition 43 2.8.2 Stationarity, mean, and autocorrelation 45 2.8.3 Wide-sense stationary processes 46 2.8.4 Time averages and ergodicity 48 2.8.5 Power spectrum 49 2.8.6 Stochastic signal models 50 2.9 Concluding remarks and references 51 Problems 52 3 Gradients and Optimization Methods 57 3.1 Vector and matrix gradients 57 3.1.1 Vector gradient 57 3.1.2 Matrix gradient 59 3.1.3 Examples of gradients 59 CONTENTS VU 3.1.4 Taylor series expansions 62 3.2 Learning rules for unconstrained optimization 63 3.2.1 Gradient descent 63 3.2.2 Second-order learning 65 3.2.3 The natural gradient and relative gradient 67 3.2.4 Stochastic gradient descent 68 3.2.5 Convergence of stochastic on-line algorithms * 71 3.3 Learning rules for constrained optimization 73 3.3.1 The Lagrange method 73 3.3.2 Projection methods 73 3.4 Concluding remarks and references 75 Problems 75 4 Estimation Theory 77 4.1 Basic concepts 78 4.2 Properties of estimators 80 4.3 Method of moments 84 4.4 Least-squares estimation 86 4.4.1 Linear least-squares method 86 4.4.2 Nonlinear and generalized least squares * 88 4.5 Maximum likelihood method 90 4.6 Bayesian estimation * 94 4.6.1 Minimum mean-square error estimator 94 4.6.2 Wiener filtering 96 4.6.3 Maximum a posteriori (MAP) estimator 97 4.7 Concluding remarks and references 99 Problems 101 5 Information Theory 105 5.1 Entropy 105 5.1.1 Definition of entropy 105 5.1.2 Entropy and coding length 107 5.1.3 Differential entropy 108 5.1.4 Entropy of a transformation 109 5.2 Mutual information 110 5.2.1 Definition using entropy 110 5.2.2 Definition using Kullback-Leibler divergence 110 viii CONTENTS 5.3 Maximum entropy 111 5.3.1 Maximum entropy distributions 111 5.3.2 Maximality property of gaussian distribution 112 5.4 Negentropy 112 5.5 Approximation of entropy by cumulants 113 5.5.1 Polynomial density expansions 113 5.5.2 Using expansions for entropy approximation 114 5.6 Approximation of entropy by nonpolynomial functions 115 5.6.1 Approximating the maximum entropy 116 5.6.2 Choosing the nonpolynomial functions 117 5.6.3 Simple special cases 118 5.6.4 Illustration 119 5.7 Concluding remarks and references 120 Problems 121 Appendix proofs 122 Principal Component Analysis and Whitening 125 6.1 Principal components 125 6.1.1 PC A by variance maximization 127 6.1.2 PCA by minimum MSE compression 128 6.1.3 Choosing the number of principal components 129 6.1.4 Closed-form computation of PCA 131 6.2 PCA by on-line learning 132 6.2.1 The stochastic gradient ascent algorithm 133 6.2.2 The subspace learning algorithm 134 6.2.3 The PAST algorithm * 135 6.2.4 PCA and back-propagation learning * 136 6.2.5 Extensions of PCA to nonquadratic criteria * 137 6.3 Factor analysis 138 6.4 Whitening 140 6.5 Orthogonalization 141 6.6 Concluding remarks and references 143 Problems 144 CONTENTS ¡X Part II BASIC INDEPENDENT COMPONENT ANALYSIS 7 What is Independent Component Analysis? 147 7.1 Motivation 147 7.2 Definition of independent component analysis 151 7.2.1 ICA as estimation of a generative model 151 7.2.2 Restrictions in ICA 152 7.2.3 Ambiguities of ICA 154 7.2.4 Centering the variables 154 7.3 Illustration of ICA 155 7.4 ICA is stronger that whitening 158 7.4.1 Uncorrelatedness and whitening 158 7.4.2 Whitening is only half ICA 160 7.5 Why gaussian variables are forbidden 161 7.6 Concluding remarks and references 163 Problems 164 8 ICA by Maximization of Nongaussianity 165 8.1 Nongaussian is independent 166 8.2 Measuring nongaussianity by kurtosis 171 8.2.1 Extrema give independent components 171 8.2.2 Gradient algorithm using kurtosis 175 8.2.3 A fast fixed-point algorithm using kurtosis 178 8.2.4 Examples 179 8.3 Measuring nongaussianity by negentropy 182 8.3.1 Critique of kurtosis 182 8.3.2 Negentropy as nongaussianity measure 182 8.3.3 Approximating negentropy 183 8.3.4 Gradient algorithm using negentropy 185 8.3.5 A fast fixed-point algorithm using negentropy 188 8.4 Estimating several independent components 192 8.4.1 Constraint of uncorrelatedness 192 8.4.2 Deflationary orthogonalization 194 8.4.3 Symmetric orthogonalization 194 8.5 ICA and projection pursuit 197 8.5.1 Searching for interesting directions 197 8.5.2 Nongaussian is interesting 197 8.6 Concluding remarks and references 198 X CONTENTS Problems 199 Appendix proofs 201 9 ICA by Maximum Likelihood Estimation 203 9.1 The likelihood of the ICA model 203 9.1.1 Deriving the likelihood 203 9.1.2 Estimation of the densities 204 9.2 Algorithms for maximum likelihood estimation 207 9.2.1 Gradient algorithms 207 9.2.2 A fast fixed-point algorithm 209 9.3 The infomax principle 211 9.4 Examples 213 9.5 Concluding remarks and references 214 Problems 218 Appendix proofs 219 10 ICA by Minimization of Mutual Information 221 10.1 Defining ICA by mutual information 221 10.1.1 Information-theoretic concepts 221 10.1.2 Mutual information as measure of dependence 222 10.2 Mutual information and nongaussianity 223 10.3 Mutual information and likelihood 224 10.4 Algorithms for minimization of mutual information 224 10.5 Examples 225 10.6 Concluding remarks and references 225 Problems 227 11 ICA by Tensorial Methods 229 11.1 Definition of cumulant tensor 229 11.2 Tensor eigenvalues give independent components 230 11.3 Tensor decomposition by a power method 232 11.4 Joint approximate diagonalization of eigenmatrices 234 11.5 Weighted correlation matrix approach 235 11.5.1 The E OBI algorithm 235 11.5.2 From FOBI to JADE 235 11.6 Concluding remarks and references 236 Problems 237 CONTENTS XI 12 ICA by Nonlinear Decorrelation and Nonlinear PCA 239 12.1 Nonlinear correlations and independence 240 12.2 The Hérault-Jutten algorithm 242 12.3 The Cichocki-Unbehauen algorithm 243 12.4 The estimating functions approach * 245 12.5 Equivariant adaptive separation via independence 247 12.6 Nonlinear principal components 249 12.7 The nonlinear PCA criterion and ICA 251 12.8 Learning rules for the nonlinear PCA criterion 254 12.8.1 The nonlinear subspace rule 254 12.8.2 Convergence of the nonlinear subspace rule * 255 12.8.3 Nonlinear recursive least-squares rule 258 12.9 Concluding remarks and references 261 Problems 262 13 Practical Considerations 263 13.1 Preprocessing by time filtering 263 13.1.1 Why time filtering is possible 264 13.1.2 Low-pass filtering 265 13.1.3 High-pass filtering and innovations 265 13.1.4 Optimal filtering 266 13.2 Preprocessing by PCA 267 13.2.1 Making the mixing matrix square 267 13.2.2 Reducing noise and preventing overlearning 268 13.3 How many components should be estimated? 269 13.4 Choice of algorithm 271 13.5 Concluding remarks and references 272 Problems 272 14 Overview and Comparison of Basic ICA Methods 273 14.1 Objective functions vs. algorithms 273 14.2 Connections between ICA estimation principles 274 14.2.1 Similarities between estimation principles 274 14.2.2 Differences between estimation principles 275 14.3 Statistically optimal nonlinearities 276 14.3.1 Comparison of asymptotic variance * 276 14.3.2 Comparison of robustness * 277 14.3.3 Practical choice of nonlinearity 279 Xli CONTENTS 14.4 Experimental comparison of ICA algorithms 280 14.4.1 Experimental set-up and algorithms 281 14.4.2 Results for simulated data 282 14.4.3 Comparisons with real-world data 286 14.5 References 287 14.6 Summary of basic ICA 287 Appendix Proofs 289 Part III EXTENSIONS AND RELATED METHODS 15 Noisy ICA 293 15.1 Definition 293 15.2 Sensor noise vs. source noise 294 15.3 Few noise sources 295 15.4 Estimation of the mixing matrix 295 15.4.1 Bias removal techniques 296 15.4.2 Higher-order cumulant methods 298 15.4.3 Maximum likelihood methods 299 15.5 Estimation of the noise-free independent components 299 15.5.1 Maximum a posteriori estimation 299 15.5.2 Special case of shrinkage estimation 300 15.6 Denoising by sparse code shrinkage 303 15.7 Concluding remarks 304 16 ICA with Overcomplete Bases 305 16.1 Estimation of the independent components 306 16.1.1 Maximum likelihood estimation 306 16.1.2 The case of supergaussian components 307 16.2 Estimation of the mixing matrix 307 16.2.1 Maximizing joint likelihood 307 16.2.2 Maximizing likelihood approximations 308 16.2.3 Approximate estimation by quasiorthogonality 309 16.2.4 Other approaches 311 16.3 Concluding remarks 313 CONTENTS xiii 17 Nonlinear ICA 315 17.1 Nonlinear ICA and BSS 315 17.1.1 The nonlinear ICA and BSS problems 315 17.1.2 Existence and uniqueness of nonlinear ICA 317 17.2 Separation of post-nonlinear mixtures 319 17.3 Nonlinear BSS using self-organizing maps 320 17.4 A generative topographic mapping approach * 322 17.4.1 Background 322 17.4.2 The modified GTM method 323 17.4.3 An experiment 326 17.5 An ensemble learning approach to nonlinear BSS 328 17.5.1 Ensemble learning 328 17.5.2 Model structure 329 17.5.3 Computing Kullbach-Leibler cost function * 330 17.5.4 Learning procedure * 332 17.5.5 Experimental results 333 17.6 Other approaches 337 17.7 Concluding remarks 339 18 Methods using Time Structure 341 18.1 Separation by autocovariances 342 18.1.1 An alternative to nongaussianity 342 18.1.2 Using one time lag 343 18.1.3 Extension to several time lags 344 18.2 Separation by nonstationarity of variances 346 18.2.1 Using local autocorrelations 347 18.2.2 Using cross-cumulants 349 18.3 Separation principles unified 351 18.3.1 Comparison of separation principles 351 18.3.2 Kolmogorojf complexity as unifying framework 352 18.4 Concluding remarks 354 Xiv CONTENTS 19 Convolutive Mixtures and Blind Deconvolution 355 19.1 Blind deconvolution 356 19.1.1 Problem definition 356 19.1.2 Bus s gang methods 357 19.1.3 Cumulant-based methods 358 19.1.4 Blind deconvolution using linear ICA 360 19.2 Blind separation of convolutive mixtures 361 19.2.1 The convolutive BSS problem 361 19.2.2 Reformulation as ordinary ICA 363 19.2.3 Natural gradient methods 364 19.2.4 Fourier transform methods 365 19.2.5 Spatiotemporal decorrelation methods 367 19.2.6 Other methods for convolutive mixtures 367 19.3 Concluding remarks 368 Appendix Discrete-time filters and the z-transform 369 20 Other Extensions 371 20.1 Priors on the mixing matrix 371 20.1.1 Motivation for prior information 371 20.1.2 Classic priors 372 20.1.3 Sparse priors 374 20.1.4 Spatiotemporal ICA 377 20.2 Relaxing the independence assumption 378 20.2.1 Multidimensional ICA 379 20.2.2 Independent subspace analysis 380 20.2.3 Topographic ICA 382 20.3 Complex-valued data 383 20.3.1 Basic concepts of complex random variables 383 20.3.2 Indeterminacy of the independent components 384 20.3.3 Choice of the nongaussianity measure 385 20.3.4 Consistency of estimator 386 20.3.5 Fixed-point algorithm 386 20.3.6 Relation to independent subspaces 387 20.4 Concluding remarks 387 CONTENTS XV Part IV APPLICATIONS OF ICA 21 Feature Extraction by ICA 391 21.1 Linear representations 392 21.1.1 Definition 392 21.1.2 Gabor analysis 392 21.1.3 Wavelets 394 21.2 ICA and Sparse Coding 396 21.3 Estimating ICA bases from images 398 21.4 Image denoising by sparse code shrinkage 398 21.4.1 Component statistics 399 21.4.2 Remarks on windowing 400 21.4.3 Denoising results 401 21.5 Independent subspaces and topographic ICA 401 21.6 Neurophysiological connections 403 21.7 Concluding remarks 405 22 Brait ι Imaging Applications 407 22.1 Electro- and magnetoencephalography 407 22.1.1 Classes of brain imaging techniques 407 22.1.2 Measuring electric activity in the brain 408 22.1.3 Validity of the basic ICA model 409 22.2 Artifact identification from EEG and MEG 410 22.3 Analysis of evoked magnetic fields 411 22.4 ICA applied on other measurement techniques 413 22.5 Concluding remarks 414 23 Telecommunications 417 23.1 Multiuser detection and CDMA communications 417 23.2 CDMA signal model and ICA 422 23.3 Estimating fading channels 424 23.3.1 Minimization of complexity 424 23.3.2 Channel estimation * 426 23.3.3 Comparisons and discussion 428 23.4 Blind separation of convolved CDMA mixtures * 430 23.4.1 Feedback architecture 430 23.4.2 Semiblind separation method 431 23.4.3 Simulations and discussion 432 xvi CONTENTS 23.5 Improving multiuser detection using complex ICA * 434 23.5.1 Data model 435 23.5.2 ICA based receivers 436 23.5.3 Simulation results 438 23.6 Concluding remarks and references 439 24 Other Applications 441 24.1 Financial applications 441 24.1.1 Finding hidden factors in financial data 441 24.1.2 Time series prediction by ICA 443 24.2 Audio separation 446 24.3 Further applications 448 References 449 Index 476
any_adam_object 1
author Hyvärinen, Aapo
Karhunen, Juha
Oja, Erkki
author_GND (DE-588)1055801146
(DE-588)101121119X
author_facet Hyvärinen, Aapo
Karhunen, Juha
Oja, Erkki
author_role aut
aut
aut
author_sort Hyvärinen, Aapo
author_variant a h ah
j k jk
e o eo
building Verbundindex
bvnumber BV013819390
callnumber-first Q - Science
callnumber-label QA278
callnumber-raw QA278
callnumber-search QA278
callnumber-sort QA 3278
callnumber-subject QA - Mathematics
classification_rvk QH 234
SK 830
ST 300
classification_tum DAT 780f
DAT 717f
ctrlnum (OCoLC)248365948
(DE-599)BVBBV013819390
dewey-full 519.5/35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/35
dewey-search 519.5/35
dewey-sort 3519.5 235
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02447nam a2200601 c 4500</leader><controlfield tag="001">BV013819390</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150309 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">010716s2001 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">047140540X</subfield><subfield code="9">0-471-40540-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248365948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013819390</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/35</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 780f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 717f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hyvärinen, Aapo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1055801146</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Independent component analysis</subfield><subfield code="c">Aapo Hyvärinen ; Juha Karhunen ; Erkki Oja</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 481 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adaptive and learning systems for signal processing, communications, and control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse en composantes principales</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse en composantes principales</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse multivariée</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse multivariée</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">analyse composante indépendante</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">corrélation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">déconvolution</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">maximum vraisemblance</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">modèle non gaussien</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">tenseur</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">théorie estimation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komponentenanalyse</subfield><subfield code="0">(DE-588)4133251-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komponentenanalyse</subfield><subfield code="0">(DE-588)4133251-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karhunen, Juha</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)101121119X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oja, Erkki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009450085&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009450085</subfield></datafield></record></collection>
genre 1\p (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV013819390
illustrated Illustrated
indexdate 2024-12-23T15:38:26Z
institution BVB
isbn 047140540X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009450085
oclc_num 248365948
open_access_boolean
owner DE-355
DE-BY-UBR
DE-703
DE-29T
DE-91
DE-BY-TUM
DE-M347
DE-384
DE-739
DE-83
DE-11
DE-188
owner_facet DE-355
DE-BY-UBR
DE-703
DE-29T
DE-91
DE-BY-TUM
DE-M347
DE-384
DE-739
DE-83
DE-11
DE-188
physical XXI, 481 S. Ill., graph. Darst.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Wiley
record_format marc
series2 Adaptive and learning systems for signal processing, communications, and control
spellingShingle Hyvärinen, Aapo
Karhunen, Juha
Oja, Erkki
Independent component analysis
Analyse en composantes principales
Analyse en composantes principales ram
Analyse multivariée
Analyse multivariée ram
analyse composante indépendante inriac
corrélation inriac
déconvolution inriac
maximum vraisemblance inriac
modèle non gaussien inriac
tenseur inriac
théorie estimation inriac
Komponentenanalyse (DE-588)4133251-9 gnd
Signalverarbeitung (DE-588)4054947-1 gnd
subject_GND (DE-588)4133251-9
(DE-588)4054947-1
(DE-588)4113937-9
title Independent component analysis
title_auth Independent component analysis
title_exact_search Independent component analysis
title_full Independent component analysis Aapo Hyvärinen ; Juha Karhunen ; Erkki Oja
title_fullStr Independent component analysis Aapo Hyvärinen ; Juha Karhunen ; Erkki Oja
title_full_unstemmed Independent component analysis Aapo Hyvärinen ; Juha Karhunen ; Erkki Oja
title_short Independent component analysis
title_sort independent component analysis
topic Analyse en composantes principales
Analyse en composantes principales ram
Analyse multivariée
Analyse multivariée ram
analyse composante indépendante inriac
corrélation inriac
déconvolution inriac
maximum vraisemblance inriac
modèle non gaussien inriac
tenseur inriac
théorie estimation inriac
Komponentenanalyse (DE-588)4133251-9 gnd
Signalverarbeitung (DE-588)4054947-1 gnd
topic_facet Analyse en composantes principales
Analyse multivariée
analyse composante indépendante
corrélation
déconvolution
maximum vraisemblance
modèle non gaussien
tenseur
théorie estimation
Komponentenanalyse
Signalverarbeitung
Hochschulschrift
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009450085&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT hyvarinenaapo independentcomponentanalysis
AT karhunenjuha independentcomponentanalysis
AT ojaerkki independentcomponentanalysis