Modern sampling theory mathematics and applications

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Boston ; Basel ; Berlin Birkhäuser 2001
Schriftenreihe:Applied and numerical harmonic analysis
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV013758768
003 DE-604
005 20180727
007 t
008 010529s2001 gw ad|| |||| 00||| eng d
016 7 |a 961525029  |2 DE-101 
020 |a 9780817640231  |9 978-0-8176-4023-1 
020 |a 3764340231  |9 3-7643-4023-1 
020 |a 0817640231  |9 0-8176-4023-1 
035 |a (OCoLC)44681881 
035 |a (DE-599)BVBBV013758768 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-703  |a DE-29T  |a DE-N2  |a DE-91G  |a DE-11  |a DE-739  |a DE-83 
050 0 |a QA276.6 
082 0 |a 519.5/2  |2 21 
084 |a SK 835  |0 (DE-625)143260:  |2 rvk 
084 |a 94C10  |2 msc 
084 |a 42-06  |2 msc 
084 |a 42C40  |2 msc 
084 |a MAT 629f  |2 stub 
084 |a 94-06  |2 msc 
245 1 0 |a Modern sampling theory  |b mathematics and applications  |c John J. Benedetto ... eds. 
264 1 |a Boston ; Basel ; Berlin  |b Birkhäuser  |c 2001 
300 |a XVI, 417 S.  |b Ill., graph. Darst. : 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Applied and numerical harmonic analysis 
500 |a Literaturverz. S. 379 - 413 
650 4 |a Échantillonnage (Statistique) 
650 4 |a Sampling (Statistics) 
650 0 7 |a Stichprobe  |0 (DE-588)4057502-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Stichprobe  |0 (DE-588)4057502-0  |D s 
689 0 |5 DE-604 
700 1 |a Benedetto, John J.  |d 1939-  |e Sonstige  |0 (DE-588)132081482  |4 oth 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009406101&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-009406101 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 629f 2001 A 1695
DE-BY-TUM_katkey 1424351
DE-BY-TUM_media_number 040020113619
_version_ 1816712300124438528
adam_text MODERN SAMPLING THEORY MATHEMATICS AND APPLICATIONS JOHN J. BENEDETTO PAULO J.S.G. FERREIRA EDITORS WITH 37 FIGURES BIRKHAUSER BOSTON * BASEL * BERLIN CONTENTS PREFACE XI CONTRIBUTORS XIII 1 INTRODUCTION 1 JOHN J. BENEDETTO AND PAULO J. S. G. FERREIRA 1.1 THE CLASSICAL SAMPLING THEOREM 1 1.2 NON-UNIFORM SAMPLING AND FRAMES 10 1.3 OUTLINE OF THE BOOK 21 1.3.1 SAMPLING, WAVELETS, AND THE UNCERTAINTY PRINCIPLE 22 1.3.2 SAMPLING TOPICS FROM MATHEMATICAL ANALYSIS . . . . 23 1.3.3 SAMPLING TOOLS AND APPLICATIONS 24 2 ON THE TRANSMISSION CAPACITY OF THE ETHER AND WIRE IN ELECTROCOMMUNICATIONS 27 V. A. KOTEL NIKOV (TRANSLATED BY V. E. KATSNELSON) I SAMPLING, WAVELETS, AND THE UNCERTAINTY PRINCIPLE 47 3 WAVELETS AND SAMPLING 49 GILBERT G. WALTER 3.1 INTRODUCTION 49 3.1.1 BACKGROUND 49 3.1.2 THE RKHS SETTING 50 3.1.3 THE WAVELET SETTING 51 3.2 SAMPLING IN OTHER SPACES 52 3.2.1 IMPULSE TRAIN CONVERGENCE 53 3.2.2 RKHS AND SAMPLING 57 3.3 SAMPLING IN WAVELET SUBSPACES 58 3.3.1 ELEMENTS OF WAVELET THEORY 58 3.3.2 SAMPLING FUNCTIONS 60 3.3.3 SAMPLED VALUES AS COEFFICIENTS 63 3.4 INTERPOLATING MULTIWAVELETS 66 3.4.1 PROPERTIES OF HERMITE SAMPLING FUNCTIONS 67 CONTENTS EMBEDDINGS AND UNCERTAINTY PRINCIPLES FOR GENERALIZED MODULATION SPACES 73 J. A. HOGAN AND J. D. LAKEY 4.1 INTRODUCTION 73 4.1.1 WEIGHTED FOURIER INEQUALITIES IMPLY UNCERTAINTY PRINCIPLE INEQUALITIES 75 4.1.2 SHARP CONSTANTS AND ENDPOINT ESTIMATES 76 4.1.3 EMBEDDINGS FOR MODULATION SPACES 77 4.2 THE SHORT-TIME FOURIER TRANSFORM AND MODULATION SPACES 77 4.2.1 WEIGHTED FOURIER INEQUALITIES IMPLY MODULATION EMBEDDINGS 80 4.2.2 REPRESENTATION THEORY AND THE LINK WITH LITTLEWOOD- PALEY THEORY 81 4.2.3 MORE REMARKS ON THE UNCERTAINTY PRINCIPLE 82 4.3 MODULATION EMBEDDINGS AND UNCERTAINTY PRINCIPLES .... 82 4.3.1 GROCHENIG S TWO-SIDED EMBEDDING THEOREM .... 82 4.3.2 LIEB S SHARP SINGLE-SIDED EMBEDDING THEOREM ... 88 4.4 SYMMETRIC LOCALIZATION 89 4.5 GENERALIZED MODULATION SPACES 93 4.5.1 GENERALIZED SQUARE-INTEGRABILITY, FRAMES, AND THE METAPLECTIC GROUP 94 4.5.2 THE METAPLECTIC GROUP 95 4.5.3 GENERALIZED SQUARE INTEGRABILITY 96 4.5.4 CONNECTION WITH TIME-FREQUENCY LOCALIZATION ... 97 4.5.5 METAPLECTIC FRAMES 97 4.6 GENERALIZED MODULATION SPACES AND EMBEDDING 100 SAMPLING THEORY FOR CERTAIN HILBERT SPACES OF BANDLIMITED FUNCTIONS 107 JEAN-PIERRE GABARDO 5.1 INTRODUCTION 107 5.2 NOTATION 108 5.3 POSITIVE-DEFINITE DISTRIBUTIONS ON (-R, R) 109 5.4 THE CASE WHERE A4R(H) HAS FINITE CODIMENSION IN L^ . . 115 5.5 THE GENERAL CASE 129 5.6 RIESZ BASES AND FRAMES 134 SHANNON-TYPE WAVELETS AND THE CONVERGENCE OF THEIR ASSOCIATED WAVELET SERIES 135 AHMED I. ZAYED 6.1 INTRODUCTION 135 6.2 PRELIMINARIES 136 6.3 SHANNON S WAVELET 138 6.4 GENERALIZED SHANNON WAVELETS 140 6.5 POINTWISE CONVERGENCE OF SHANNON-TYPE WAVELET SERIES . . . 147 CONTENTS VII II SAMPLING TOPICS FROM MATHEMATICAL ANALYSIS 153 7 NON-UNIFORM SAMPLING IN HIGHER DIMENSIONS: FROM TRIGONOMETRIC POLYNOMIALS TO BANDLIMITED FUNCTIONS 155 KARLHEINZ GROCHENIG 7.1 INTRODUCTION 155 7.2 NON-UNIFORM SAMPLING WITH TRIGONOMETRIC POLYNOMIALS . . 157 7.3 TOWARD BANDLIMITED FUNCTIONS 161 7.4 PROOF OF THEOREM 7.1 167 8 THE ANALYSIS OF OSCILLATORY BEHAVIOR IN SIGNALS THROUGH THEIR SAMPLES 173 RODOLFO H. TORRES 8.1 INTRODUCTION AND MOTIVATION 173 8.2 BESOV SPACES OF FUNCTIONS 178 8.3 SAMPLING THEOREM FOR BESOV SPACES AND THEIR DISCRETE COUNTERPART 182 8.4 OTHER CHARACTERIZATIONS OF THE DISCRETE BESOV SPACES . . . 185 8.5 NONLINEAR APPROXIMATION OF BAND LIMITED SIGNALS USING SAMPLES 188 8.6 CONCLUDING REMARKS 192 9 RESIDUE AND SAMPLING TECHNIQUES IN DECONVOLUTION 193 STEPHEN CASEY AND DAVID WALNUT 9.1 INTRODUCTION 193 9.1.1 STATEMENT OF THE PROBLEM 193 9.1.2 THE COPRIME CONDITION AND LOCAL DECONVOLUTION . . 194 9.1.3 OTHER TYPES OF DECONVOLVERS 195 9.1.4 EXAMPLE: CUBES IN R D 196 9.1.5 EXAMPLE: BALLS IN R D 197 9.1.6 PRACTICAL DECONVOLUTION 198 9.2 RESIDUE METHODS FOR DECONVOLUTION 199 9.3 SAMPLING METHODS FOR DECONVOLUTION 209 9.3.1 DECONVOLUTION AND SETS OF UNIQUENESS IN C M - 2 [-R,R] 210 9.3.2 NONPERIODIC FRAMES AND BASES FOR L 2 [*R, R] .... 215 9.3.3 DECONVOLUTION AND THE COMPLETENESS OF T 217 10 SAMPLING THEOREMS FROM THE ITERATION OF LOW ORDER DIFFERENTIAL OPERATORS 219 J. R. HLGGINS 10.1 INTRODUCTION 219 10.2 PRELIMINARY FACTS AND METHODS 220 10.3 EXAMPLES OF THE METHOD 223 10.4 REMARKS AND OPEN PROBLEMS 227 VIII CONTENTS 11 APPROXIMATION OF CONTINUOUS FUNCTIONS BY ROGOSINSKI* TYPE SAMPLING SERIES 229 ANDI KIVINUKK 11.1 NOTATION AND INTRODUCTION TO THE SAMPLING SERIES 229 11.2 ROGOSINSKI*TYPE SAMPLING SERIES 232 11.3 APPLICATIONS TO GENERALIZED SAMPLING SERIES 239 11.4 CONCLUSION 244 III SAMPLING TOOLS AND APPLICATIONS 245 12 FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA: A TUTORIAL 247 DANIEL POTTS, GABRIELE STEIDL, AND MANFRED TASCHE 12.1 INTRODUCTION 247 12.2 NDFT FOR NONEQUISPACED DATA EITHER IN TIME OR FREQUENCY DOMAIN 250 12.3 NDFT FOR NONEQUISPACED DATA IN TIME AND FREQUENCY DOMAIN 258 12.4 ROUNDOFF ERRORS 261 12.5 FAST BESSEL TRANSFORM 265 13 EFFICIENT MINIMUM RATE SAMPLING OF SIGNALS WITH FREQUEN- CY SUPPORT OVER NON-COMMENSURABLE SETS 271 CORMAC HERLEY AND PING WAH WONG 13.1 INTRODUCTION 271 13.2 PERIODIC NON-UNIFORM SAMPLING 273 13.3 RECONSTRUCTION OF A DISCRETE-TIME SIGNAL FROM N SAMPLES OUT OF M 275 13.4 FILTER DESIGN USING POCS 283 13.5 MINIMUM RATE SAMPLING OF MULTIBAND SIGNALS 284 13.6 SLICING THE SPECTRUM 288 13.6.1 DIVIDING THE BANDS INTO SLICES 290 13.6.2 FREEDOM IN PAIRING 290 13.6.3 PAIRING THE EDGES 291 14 FINITE- AND INFINITE-DIMENSIONAL MODELS FOR OVERSAMPLED FILTER BANKS 293 THOMAS STROHMER 14.1 INTRODUCTION 293 14.1.1 OVERSAMPLED FILTER BANKS AND FRAMES 295 14.2 FINITE-DIMENSIONAL MODELS FOR FILTER BANKS 296 14.2.1 THE FINITE SECTION METHOD FOR OVERSAMPLED FILTER BANKS 297 CONTENTS IX 14.2.2 FINITE SECTIONS, LAURENT OPERATORS, AND POLYPHASE MATRICES 298 14.2.3 POLYPHASE MATRICES AND PERFECT SYMBOL CALCULUS IN FINITE DIMENSIONS 300 14.3 CONVERGENCE AND RATES OF APPROXIMATION FOR FINITE DIMENSIONAL APPROXIMATIONS . . . 301 14.3.1 RATES OF APPROXIMATION FOR OVERSAMPLED FILTER BANKS 302 14.4 CONVERGENCE USING POLYPHASE REPRESENTATION 305 14.5 FINITE-DIMENSIONAL APPROXIMATION OF PARAUNITARY FILTER BANKS VIA 5 2 309 14.6 OVERSAMPLED DFT FILTER BANKS * BEYOND POLYPHASE REPRESENTATION 311 14.6.1 MATRIX FACTORIZATION OF THE FRAME OPERATOR 312 15 STATISTICAL ASPECTS OF SAMPLING FOR NOISY AND GROUPED DA- TA 317 M. PAWLAK AND U. STADTMULLER 15.1 INTRODUCTION 317 15.2 SAMPLING FROM NOISY DATA AND SIGNAL RECOVERY 319 15.3 SIGNAL RECOVERY FROM GROUPED DATA 324 15.4 STATISTICAL ACCURACY 327 15.5 CONCLUDING REMARKS 334 15.6 PROOFS 336 16 RECONSTRUCTION OF MRI IMAGES FROM NON-UNIFORM SAMPLING AND ITS APPLICATION TO INTRASCAN MOTION CORRECTION IN FUNCTIONAL MRI 343 MARC BOURGEOIS, FRANK T. A. W. WAJER, DIRK VAN ORMONDT, AND DANIELLE GRAVERON-DEMILLY 16.1 INTRODUCTION 343 16.2 MRI SAMPLING TRAJECTORIES 344 16.3 MOTION INFLUENCE AND CORRECTION OF INTRASCAN MOTION ARTIFACTS 346 16.3.1 PHYSIOLOGICAL AND SUBJECT MOTIONS 346 16.3.2 REDUCTION OF MOTION ARTIFACTS IN IMAGES 347 16.3.3 CORRECTION OF INTRASCAN MOTIONS IN FMRI 347 16.4 IMAGE RECONSTRUCTION FROM NON-UNIFORM SAMPLING 350 16.4.1 GRIDDING FROM A NON-UNIFORM GRID TO A CARTESIAN GRID AND VICE VERSA 350 16.4.2 DENSITY CORRECTION AND VORONOI ALGORITHM 351 16.4.3 LIMITS OF GRIDDING 352 16.5 BAYESIAN IMAGE ESTIMATION 353 16.5.1 PREAMBLE 353 16.5.2 THE MOST PROBABLE IMAGE 354 X CONTENTS 16.5.3 THE LIKELIHOOD 355 16.5.4 THE PRIOR 355 16.5.5 CALCULATION OF TI 358 16.6 APPLICATIONS OF INTRASCAN MOTION CORRECTION TO FMRI . . . . 358 16.6.1 SHEPP-LOGAN SIMULATION 358 16.6.2 SIMULATED FMRI EXPERIMENT 359 16.7 CONCLUSIONS 362 17 EFFICIENT SAMPLING OF THE ROTATION INVARIANT RADON TRANSFORM 365 LAURENT DESBAT AND CATHERINE MENNESSIER 17.1 INTRODUCTION 365 17.1.1 PRINCIPLE 365 17.1.2 INVERSE PROBLEM FORMALISM 366 17.2 EFFICIENT SAMPLING IN 2D TOMOGRAPHY 369 17.2.1 RESULTS IN STANDARD TOMOGRAPHY 369 17.2.2 GENERALIZATION TO THE ROTATION INVARIANT RADON TRANSFORM 371 17.3 APPLICATION TO DOPPLER IMAGING 374 17.3.1 NULL INCLINATION CASE: A = 0 374 17.3.2 PERPENDICULAR INCLINATION CASE: A = IR/2 374 17.4 DISCUSSION 376 REFERENCES 379 INDEX 414
any_adam_object 1
author_GND (DE-588)132081482
building Verbundindex
bvnumber BV013758768
callnumber-first Q - Science
callnumber-label QA276
callnumber-raw QA276.6
callnumber-search QA276.6
callnumber-sort QA 3276.6
callnumber-subject QA - Mathematics
classification_rvk SK 835
classification_tum MAT 629f
ctrlnum (OCoLC)44681881
(DE-599)BVBBV013758768
dewey-full 519.5/2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/2
dewey-search 519.5/2
dewey-sort 3519.5 12
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01858nam a2200505 c 4500</leader><controlfield tag="001">BV013758768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180727 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010529s2001 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">961525029</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817640231</subfield><subfield code="9">978-0-8176-4023-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764340231</subfield><subfield code="9">3-7643-4023-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817640231</subfield><subfield code="9">0-8176-4023-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44681881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013758768</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 835</subfield><subfield code="0">(DE-625)143260:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">94C10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42C40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 629f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">94-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern sampling theory</subfield><subfield code="b">mathematics and applications</subfield><subfield code="c">John J. Benedetto ... eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 417 S.</subfield><subfield code="b">Ill., graph. Darst. : 24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and numerical harmonic analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 379 - 413</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Échantillonnage (Statistique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stichprobe</subfield><subfield code="0">(DE-588)4057502-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stichprobe</subfield><subfield code="0">(DE-588)4057502-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benedetto, John J.</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)132081482</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009406101&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009406101</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV013758768
illustrated Illustrated
indexdate 2024-11-25T17:19:56Z
institution BVB
isbn 9780817640231
3764340231
0817640231
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009406101
oclc_num 44681881
open_access_boolean
owner DE-703
DE-29T
DE-N2
DE-91G
DE-BY-TUM
DE-11
DE-739
DE-83
owner_facet DE-703
DE-29T
DE-N2
DE-91G
DE-BY-TUM
DE-11
DE-739
DE-83
physical XVI, 417 S. Ill., graph. Darst. : 24 cm
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Birkhäuser
record_format marc
series2 Applied and numerical harmonic analysis
spellingShingle Modern sampling theory mathematics and applications
Échantillonnage (Statistique)
Sampling (Statistics)
Stichprobe (DE-588)4057502-0 gnd
subject_GND (DE-588)4057502-0
(DE-588)4143413-4
title Modern sampling theory mathematics and applications
title_auth Modern sampling theory mathematics and applications
title_exact_search Modern sampling theory mathematics and applications
title_full Modern sampling theory mathematics and applications John J. Benedetto ... eds.
title_fullStr Modern sampling theory mathematics and applications John J. Benedetto ... eds.
title_full_unstemmed Modern sampling theory mathematics and applications John J. Benedetto ... eds.
title_short Modern sampling theory
title_sort modern sampling theory mathematics and applications
title_sub mathematics and applications
topic Échantillonnage (Statistique)
Sampling (Statistics)
Stichprobe (DE-588)4057502-0 gnd
topic_facet Échantillonnage (Statistique)
Sampling (Statistics)
Stichprobe
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009406101&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT benedettojohnj modernsamplingtheorymathematicsandapplications