Best approximation in inner product spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Deutsch, Frank (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Springer 2001
Schriftenreihe:CMS books in mathematics 7
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV013676275
003 DE-604
005 20021008
007 t
008 010409s2001 xxud||| |||| 00||| eng d
016 7 |a 961768428  |2 DE-101 
020 |a 0387951563  |9 0-387-95156-3 
035 |a (OCoLC)45024471 
035 |a (DE-599)BVBBV013676275 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a xxu  |c XD-US 
049 |a DE-355  |a DE-703  |a DE-20  |a DE-29T  |a DE-824  |a DE-573  |a DE-706  |a DE-384  |a DE-521  |a DE-634  |a DE-11  |a DE-188 
050 0 |a QA322.4.D48 2001 
082 0 |a 515/.733 21 
082 0 |a 515/.733  |2 21 
084 |a SK 470  |0 (DE-625)143241:  |2 rvk 
084 |a 28  |2 sdnb 
084 |a 27  |2 sdnb 
100 1 |a Deutsch, Frank  |e Verfasser  |4 aut 
245 1 0 |a Best approximation in inner product spaces  |c Frank Deutsch 
264 1 |a New York [u.a.]  |b Springer  |c 2001 
300 |a XV, 338 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a CMS books in mathematics  |v 7 
650 4 |a Approximation, Théorie de l' 
650 4 |a Espaces à produit scalaire 
650 4 |a Inner product spaces 
650 4 |a Approximation theory 
650 0 7 |a Innenproduktraum  |0 (DE-588)4130366-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Beste Approximation  |0 (DE-588)4144932-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Approximationstheorie  |0 (DE-588)4120913-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Approximationstheorie  |0 (DE-588)4120913-8  |D s 
689 0 1 |a Innenproduktraum  |0 (DE-588)4130366-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Innenproduktraum  |0 (DE-588)4130366-0  |D s 
689 1 1 |a Beste Approximation  |0 (DE-588)4144932-0  |D s 
689 1 |5 DE-604 
830 0 |a CMS books in mathematics  |v 7  |w (DE-604)BV013248581  |9 7 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009344641&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-009344641 

Datensatz im Suchindex

_version_ 1804128488490270720
adam_text xiii CONTENTS Preface vii Acknowledgments xii Chapter 1. Inner Product Spaces 1 Five Basic Problems 1 Inner Product Spaces 2 Orthogonality 8 Topological Notions 10 Hilbert Space 14 Exercises 15 Historical Notes 19 Chapter 2. Best Approximation 21 Best Approximation 21 Convex Sets 22 Five Basic Problems Revisited 27 Exercises 30 Historical Notes 32 Chapter 3. Existence and Uniqueness of Best Approximations 33 Existence of Best Approximations 33 Uniqueness of Best Approximations 35 Compactness Concepts 38 Exercises 39 Historical Notes 40 Chapter 4. Characterization of Best Approximations 43 Characterizing Best Approximations 43 Dual Cones 44 Characterizing Best Approximations from Subspaces 50 Gram Schmidt Orthonormalization 51 Fourier Analysis 54 Solutions to the First Three Basic Problems 61 Exercises 64 Historical Notes 69 Chapter 5. The Metric Projection 71 Metric Projections onto Convex Sets 71 Linear Metric Projections 77 xiv CONTENTS The Reduction Principle 80 Exercises 84 Historical Notes 87 Chapter 6. Bounded Linear Functionate and Best Approximation from Hyperplanes and Half Spaces 89 Bounded Linear Functionals 89 Representation of Bounded Linear Functionals 93 Best Approximation from Hyperplanes 97 Strong Separation Theorem 102 Best Approximation from Half Spaces 107 Best Approximation from Polyhedra 109 Exercises 117 Historical Notes 122 Chapter 7. Error of Approximation 125 Distance to Convex Sets 125 Distance to Finite Dimensional Subspaces 129 Finite Codimensional Subspaces 133 The Weierstrass Approximation Theorem 139 Miintz s Theorem 143 Exercises 148 Historical Notes 151 Chapter 8. Generalized Solutions of Linear Equations 155 Linear Operator Equations 155 The Uniform Boundedness and Open Mapping Theorems ... 164 The Closed Range and Bounded Inverse Theorems 168 The Closed Graph Theorem 169 Adjoint of a Linear Operator 171 Generalized Solutions to Operator Equations 177 Generalized Inverse 179 Exercises 187 Historical Notes 191 Chapter 9. The Method of Alternating Projections 193 The Case of Two Subspaces 193 Angle Between Two Subspaces 197 Rate of Convergence for Alternating Projections (two subspaces) 201 Weak Convergence 203 Dykstra s Algorithm 207 The Case of Affine Sets 215 Rate of Convergence for Alternating Projections 217 Examples 226 Exercises 230 Historical Notes 233 CONTENTS xv Chapter 10. Constrained Interpolation from a Convex Set 237 Shape Preserving Interpolation 237 Strong Conical Hull Intersection Property (Strong CHIP) ... 238 Affine Sets 247 Relative Interiors and a Separation Theorem 251 Extremal Subsets of C 261 Constrained Interpolation by Positive Functions 270 Exercises 277 Historical Notes 283 Chapter 11. Interpolation and Approximation 287 Interpolation 287 Simultaneous Approximation and Interpolation 292 Simultaneous Approximation, Interpolation, and Norm preservation 294 Exercises 295 Historical Notes 298 Chapter 12. Convexity of Chebyshev Sets 301 Is Every Chebyshev Set Convex? 301 Chebyshev Suns 302 Convexity of Boundedly Compact Chebyshev Sets 304 Exercises 306 Historical Notes 307 Appendix 1. Zorn s Lemma 311 Appendix 2. Every Hilbert Space Is e2{I) 312 References 315 Index 331
any_adam_object 1
author Deutsch, Frank
author_facet Deutsch, Frank
author_role aut
author_sort Deutsch, Frank
author_variant f d fd
building Verbundindex
bvnumber BV013676275
callnumber-first Q - Science
callnumber-label QA322
callnumber-raw QA322.4.D48 2001
callnumber-search QA322.4.D48 2001
callnumber-sort QA 3322.4 D48 42001
callnumber-subject QA - Mathematics
classification_rvk SK 470
ctrlnum (OCoLC)45024471
(DE-599)BVBBV013676275
dewey-full 515/.73321
515/.733
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.733 21
515/.733
dewey-search 515/.733 21
515/.733
dewey-sort 3515 3733 221
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02047nam a2200541 cb4500</leader><controlfield tag="001">BV013676275</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20021008 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010409s2001 xxud||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">961768428</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387951563</subfield><subfield code="9">0-387-95156-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45024471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013676275</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA322.4.D48 2001</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.733 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.733</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">28</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deutsch, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Best approximation in inner product spaces</subfield><subfield code="c">Frank Deutsch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 338 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CMS books in mathematics</subfield><subfield code="v">7</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation, Théorie de l'</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces à produit scalaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inner product spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Innenproduktraum</subfield><subfield code="0">(DE-588)4130366-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Innenproduktraum</subfield><subfield code="0">(DE-588)4130366-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Innenproduktraum</subfield><subfield code="0">(DE-588)4130366-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CMS books in mathematics</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV013248581</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009344641&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009344641</subfield></datafield></record></collection>
id DE-604.BV013676275
illustrated Illustrated
indexdate 2024-07-09T18:50:02Z
institution BVB
isbn 0387951563
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009344641
oclc_num 45024471
open_access_boolean
owner DE-355
DE-BY-UBR
DE-703
DE-20
DE-29T
DE-824
DE-573
DE-706
DE-384
DE-521
DE-634
DE-11
DE-188
owner_facet DE-355
DE-BY-UBR
DE-703
DE-20
DE-29T
DE-824
DE-573
DE-706
DE-384
DE-521
DE-634
DE-11
DE-188
physical XV, 338 S. graph. Darst.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer
record_format marc
series CMS books in mathematics
series2 CMS books in mathematics
spelling Deutsch, Frank Verfasser aut
Best approximation in inner product spaces Frank Deutsch
New York [u.a.] Springer 2001
XV, 338 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
CMS books in mathematics 7
Approximation, Théorie de l'
Espaces à produit scalaire
Inner product spaces
Approximation theory
Innenproduktraum (DE-588)4130366-0 gnd rswk-swf
Beste Approximation (DE-588)4144932-0 gnd rswk-swf
Approximationstheorie (DE-588)4120913-8 gnd rswk-swf
Approximationstheorie (DE-588)4120913-8 s
Innenproduktraum (DE-588)4130366-0 s
DE-604
Beste Approximation (DE-588)4144932-0 s
CMS books in mathematics 7 (DE-604)BV013248581 7
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009344641&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Deutsch, Frank
Best approximation in inner product spaces
CMS books in mathematics
Approximation, Théorie de l'
Espaces à produit scalaire
Inner product spaces
Approximation theory
Innenproduktraum (DE-588)4130366-0 gnd
Beste Approximation (DE-588)4144932-0 gnd
Approximationstheorie (DE-588)4120913-8 gnd
subject_GND (DE-588)4130366-0
(DE-588)4144932-0
(DE-588)4120913-8
title Best approximation in inner product spaces
title_auth Best approximation in inner product spaces
title_exact_search Best approximation in inner product spaces
title_full Best approximation in inner product spaces Frank Deutsch
title_fullStr Best approximation in inner product spaces Frank Deutsch
title_full_unstemmed Best approximation in inner product spaces Frank Deutsch
title_short Best approximation in inner product spaces
title_sort best approximation in inner product spaces
topic Approximation, Théorie de l'
Espaces à produit scalaire
Inner product spaces
Approximation theory
Innenproduktraum (DE-588)4130366-0 gnd
Beste Approximation (DE-588)4144932-0 gnd
Approximationstheorie (DE-588)4120913-8 gnd
topic_facet Approximation, Théorie de l'
Espaces à produit scalaire
Inner product spaces
Approximation theory
Innenproduktraum
Beste Approximation
Approximationstheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009344641&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV013248581
work_keys_str_mv AT deutschfrank bestapproximationininnerproductspaces