The theory of evolution strategies with 9 tables

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Beyer, Hans-Georg (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2001
Schriftenreihe:Natural computing series
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008c 4500
001 BV013652747
003 DE-604
005 20120320
007 t|
008 010320s2001 gw d||| |||| 00||| eng d
016 7 |a 960875832  |2 DE-101 
020 |a 3540672974  |9 3-540-67297-4 
035 |a (OCoLC)247928112 
035 |a (DE-599)BVBBV013652747 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-703  |a DE-29T  |a DE-91  |a DE-824  |a DE-19  |a DE-M347  |a DE-634  |a DE-11  |a DE-525  |a DE-20 
050 0 |a QA76.618 
082 0 |a 005.1 
084 |a ST 120  |0 (DE-625)143585:  |2 rvk 
084 |a ST 134  |0 (DE-625)143590:  |2 rvk 
084 |a ST 285  |0 (DE-625)143648:  |2 rvk 
084 |a ST 301  |0 (DE-625)143651:  |2 rvk 
084 |a WH 2500  |0 (DE-625)148643:  |2 rvk 
084 |a BIO 175f  |2 stub 
084 |a BIO 445f  |2 stub 
100 1 |a Beyer, Hans-Georg  |e Verfasser  |4 aut 
245 1 0 |a The theory of evolution strategies  |b with 9 tables  |c Hans-Georg Beyer 
264 1 |a Berlin [u.a.]  |b Springer  |c 2001 
300 |a XIX, 380 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Natural computing series 
650 4 |a Evolutionsstrategie 
650 4 |a Computer algorithms 
650 4 |a Evolutionary programming (Computer science) 
650 0 7 |a Evolutionsstrategie  |0 (DE-588)4015930-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Evolutionsstrategie  |0 (DE-588)4015930-9  |D s 
689 0 |5 DE-604 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009328407&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009328407 

Datensatz im Suchindex

DE-19_call_number 1004/QH 252 B573
DE-19_location 70
DE-BY-TUM_call_number 0001 05.2001 A 123
DE-BY-TUM_katkey 1200339
DE-BY-TUM_location Mag
DE-BY-TUM_media_number 040004814793
DE-BY-UBM_katkey 2454360
DE-BY-UBM_local_subject Biostatistik. - Evolutionstheorie
DE-BY-UBM_media_number 41621803610018
_version_ 1823052110576484352
adam_text HANS-GEORG BEYER THE THEORY OF EVOLUTION STRATEGIES WITH 52 FIGURES AND 9 TABLES SPRINGER CONTENTS 1. INTRODUCTION 1 1.1 A SHORT CHARACTERIZATION OF THE EA 1 1.2 THE EVOLUTION STRATEGY 4 1.2.1 THE (N/P + A)-ES ALGORITHM 4 1.2.2 THE GENETIC OPERATORS OF THE ES 7 1.2.2.1 THE SELECTION OPERATOR 8 1.2.2.2 THE MUTATION OPERATOR 9 1.2.2.3 THE REPRODUCTION OPERATOR 11 1.2.2.4 THE RECOMBINATION OPERATOR 12 1.3 THE CONVERGENCE OF THE EVOLUTION STRATEGY 14 1.3.1 ES CONVERGENCE - GLOBAL ASPECTS 15 1.3.2 ES CONVERGENCE - LOCAL ASPECTS 17 1.4 BASIC PRINCIPLES OF EVOLUTIONARY ALGORITHMS 18 1.4.1 EVOLVABILITY 18 1.4.2 EPP, GR, AND MISR 20 1.4.2.1 EPP - THE EVOLUTIONARY PROGRESS PRINCIPLE... 20 1.4.2.2 GR - THE GENETIC REPAIR HYPOTHESIS 21 1.4.2.3 THE MISR PRINCIPLE 21 1.5 THE ANALYSIS OF THE ES - AN OVERVIEW 22 2. CONCEPTS FOR THE ANALYSIS OF THE ES 25 2.1 LOCAL PROGRESS MEASURES 25 2.1.1 THE QUALITY GAIN Q 26 2.1.2 THE PROGRESS RATE IP 28 2.1.3 THE NORMAL PROGRESS IP R 30 2.2 MODELS OF FITNESS LANDSCAPES 31 2.2.1 THE (HYPER-)SPHERE MODEL 32 2.2.2 THE HYPERPLANE 33 2.2.3 CORRIDOR AND DISCUS - HYPERPLANES WITH RESTRICTIONS . 34 2.2.4 QUADRATIC FUNCTIONS AND LANDSCAPES OF HIGHER-ORDER . 35 2.2.5 THE BIT COUNTING FUNCTION ONEMAX 36 2.2.6 NOISY FITNESS LANDSCAPES 36 2.3 THE DIFFERENTIAL-GEOMETRICAL MODEL FOR NON-SPHERICAL FITNESS LANDSCAPES 37 XIV CONTENTS 2.3.1 FUNDAMENTALS OF THE DIFFERENTIAL-GEOMETRICAL MODEL .. 38 2.3.1.1 THE LOCAL HYPERPLANE DQ Y 38 2.3.1.2 THE METRIC TENSOR G A/3 39 2.3.1.3 THE SECOND FUNDAMENTAL FORM 40 2.3.1.4 THE MEAN CURVATURE (X) 41 2.3.2 THE CALCULATION OF THE MEAN RADIUS R { C) 43 2.3.2.1 THE METRIC TENSOR 43 2.3.2.2 THE 6 Q/3 -TENSOR 44 2.3.2.3 THE COMPUTATION OF THE MEAN RADIUS R^) * * 45 2.4 THE ES DYNAMICS 47 2.4.1 THE I2-DYNAMICS 48 2.4.2 THE SPECIAL CASE A*{G) = CONST 49 3. THE PROGRESS RATE OF THE (1 + A)-ES ON THE SPHERE MODEL 51 3.1 THE EXACT (1 + 1)-ES THEORY 51 3.1.1 THE PROGRESS RATE WITHOUT NOISE IN FITNESS MEASUREMENTS 54 3.1.2 THE PROGRESS RATE AT DISTURBED FITNESS MEASUREMENTS 57 3.2 ASYMPTOTIC FORMULAE FOR THE (1 + A)-ES 61 3.2.1 A GEOMETRICAL ANALYSIS OF THE (1 + 1)-ES 61 3.2.1.1 THE ASYMPTOTE OF THE MUTATION VECTOR Z ... 62 3.2.1.2 THE PROGRESS RATE OF THE (1 + 1)-ES ON THE SPHERE MODEL 64 3.2.1.3 THE SUCCESS PROBABILITY P S I +1 AND THE EPP . 68 3.2.2 THE ASYMPTOTIC +X INTEGRAL 69 3.2.3 THE ANALYSIS OF THE (L, A)-ES 71 3.2.3.1 THE PROGRESS RATE 1A 71 3.2.3.2 THE PROGRESS COEFFICIENT C HX 74 3.2.4 THE ANALYSIS OF THE (1 + A)-ES 77 3.2.4.1 THE PROGRESS RATE 77 3.2.4.2 THE SUCCESS PROBABILITY P SL+A 79 3.2.4.3 THE PROGRESS FUNCTION D^(X) 79 3.3 THE ASYMPTOTIC ANALYSIS OF THE (1 + A)-ES 80 3.3.1 THE THEORY OF THE (1 + A) PROGRESS RATE 80 3.3.1.1 PROGRESS INTEGRALS AND ACCEPTANCE PROBABILITIES 80 3.3.1.2 THE ASYMPTOTIC FITNESS MODEL AND THE P(Q X X) DENSITY 83 3.3.1.3 THE CALCULATION OF PI (Q) 85 3.3.2 ON THE ANALYSIS OF THE (1, A)-ES 86 3.3.2.1 THE ASYMPTOTIC YT - FORMULA 86 3.3.2.2 THE DYNAMICS OF THE (1, A)-ES 89 3.3.3 ON THE ANALYSIS OF THE (1 + A)-ES 93 CONTENTS XV 3.3.3.1 THE ASYMPTOTIC Y ? + - INTEGRAL AND P S - 1+X 93 3.3.3.2 AN (ALMOST) NECESSARY EVOLUTION CRITERION FOR (1 + A)-ES 95 3.3.3.3 SOME ASPECTS OF THE (1 + 1)-ES 97 3.3.4 CONVERGENCE IMPROVEMENT BY INHERITING SCALED MUTATIONS 102 3.3.4.1 THEORETICAL FUNDAMENTALS 102 3.3.4.2 DISCUSSION OF THE (1, A)-ES 103 3.4 THE IV-DEPENDENT (1, A) PROGRESS RATE FORMULA 104 3.4.1 MOTIVATION 104 3.4.2 THE P(R) DENSITY 105 3.4.3 THE DERIVATION OF THE IP* PROGRESS RATE FORMULA 107 3.4.4 COMPARISON WITH EXPERIMENTS 109 3.4.5 A NORMAL APPROXIMATION FOR P(R) ILL 4. THE (1 + A) QUALITY GAIN 113 4.1 THE THEORY OF THE (1 + A) QUALITY GAIN 113 4.1.1 THE Q LTA INTEGRAL 113 4.1.2 ON THE APPROXIMATION OF P Z (Z) 115 4.1.3 ON APPROXIMATING THE QUANTILE FUNCTION P^ 1 (F) .... 118 4.1.4 THE ~Q X X FORMULA . 119 4.1.5 THE Q 1+X FORMULA 120 4.2 FITNESS MODELS AND MUTATION OPERATORS 122 4.2.1 THE GENERAL QUADRATIC MODEL AND CORRELATED MUTATIONS 122 4.2.2 THE SPECIAL CASE OF ISOTROPIC GAUSSIAN MUTATIONS . .. 125 4.2.3 EXAMPLES OF NON-QUADRATIC FITNESS FUNCTIONS 126 4.2.3.1 BIQUADRATIC FITNESS WITH ISOTROPIC GAUSSIAN MUTATIONS 126 4.2.3.2 THE COUNTING ONES FUNCTION ONEMAX 127 4.3 EXPERIMENTS AND INTERPRETATIONS OF THE RESULTS 131 4.3.1 NORMALIZATION 131 4.3.1.1 QUADRATIC FITNESS, ISOTROPIC GAUSSIAN MUTA- TIONS AND THE DIFFERENTIAL-GEOMETRIC MODEL. . . 131 4.3.1.2 THE NORMALIZATION FOR THE BIQUADRATIC CASE . 134 4.3.2 EXPERIMENTS AND APPROXIMATION QUALITY 135 4.3.3 QUALITY GAIN OR PROGRESS RATE? 137 5. THE ANALYSIS OF THE (/X, A)-ES 143 5.1 FUNDAMENTALS AND THEORETICAL FRAMEWORK 143 5.1.1 PRELIMINARIES 143 5.1.2 THE (/I, A) ALGORITHM AND THE /J M ,A DEFINITION 144 5.1.3 THE Y^X INTEGRAL 146 XVI CONTENTS 5.1.4 FORMAL APPROXIMATION OF THE OFFSPRING DISTRIBUTION P{R) 147 5.1.5 ESTIMATION OF R, S, AND 7, AND OF FJR , MO N , AND M 3LRM _. 7. ... .. . 150 5.1.6 THE SIMPLIFICATION OF R R M , M- 2 R M , AND M^ R M 153 5.1.7 THE STATISTICAL APPROXIMATION OF R, S, AND 7 156 5.1.8 THE INTEGRAL EXPRESSION OF ((AR) 2 ) 159 5.1.9 THE INTEGRAL EXPRESSION OF ((AR) 3 ) 162 5.1.10 APPROXIMATION OF THE STATIONARY STATE - THE SELF-CONSISTENT METHOD 166 5.2 ON THE ANALYSIS IN THE LINEAR 7 APPROXIMATION 168 5.2.1 THE LINEAR 7 APPROXIMATION 168 5.2.2 THE APPROXIMATION OF THE TP^^X INTEGRAL 169 5.2.3 THE APPROXIMATION OF S (S +1 ) 172 5.2.3.1 THE I A INTEGRAL 173 5.2.3.2 THE I B INTEGRAL 175 5.2.3.3 COMPOSING THE S FL+1 FORMULA 176 5.2.4 THE APPROXIMATION OF 7^ +1 ) 176 5.2.4.1 THE I C INTEGRAL 177 5.2.4.2 THE I D INTEGRAL 178 5.2.4.3 THE I E INTEGRAL 181 5.2.4.4 COMPOSING THE -YIS+I) FORMULA 182 5.2.5 THE SELF-CONSISTENT METHOD AND THE TP* X FORMULAE . . . 183 5.3 THE DISCUSSION OF THE {P., A)-ES . 185 5.3.1 THE COMPARISON WITH EXPERIMENTS 185 5.3.1.1 DATA EXTRACTION FROM ES RUNS 185 5.3.1.2 THE ES SIMULATIONS FOR A = CONST AND A* = CONST 186 5.3.2 SIMPLIFIED * A FORMULAE AND THE PROGRESS COEFFICIENT C MIA 188 5.3.2.1 THE DERIVATION OF THE IP*^ X FORMULAE 188 5.3.2.2 EPP, THE PROPERTIES OF C ^X, AND THE FITNESS EFFICIENCY 189 5.3.3 THE {P., A)-ES ON THE HYPERPLANE 192 5.3.4 THE EXPLORATION BEHAVIOR OF THE (P, A)-ES 194 5.3.4.1 EVOLUTION IN THE (R,7;) PICTURE 194 5.3.4.2 THE RANDOM WALK IN THE ANGULAR SPACE .... 195 5.3.4.3 EXPERIMENTAL VERIFICATION AND DISCUSSION .... 199 5.3.4.4 FINAL REMARKS ON THE SEARCH BEHAVIOR OF THE (/X,A)-ES 199 6. THE (/J,/N, A) STRATEGIES - OR WHY SEX MAY BE GOOD ... 203 6.1 THE INTERMEDIATE (P,/P,, A)-ES 203 6.1.1 FOUNDATIONS OF THE (P,/P, A ) THEORY 204 6.1.1.1 THE (PIP,, ) ALGORITHM 204 CONTENTS XVII 6.1.1.2 THE DEFINITION OF THE PROGRESS RATE IP^/^X * * * 205 6.1.1.3 THE STATISTICAL APPROXIMATION OF ^ M /^,A 206 6.1.2 THE CALCULATION OF WMJ.A 210 6.1.2.1 THE DERIVATION OF THE EXPECTED VALUE 7^ 210 6.1.2.2 THE DERIVATION OF THE EXPECTED VALUE (H 2 )... 213 6.1.2.3 THE (P/P,, ) PROGRESS RATE 215 6.1.3 THE DISCUSSION OF THE (P/P,,X) THEORY 216 6.1.3.1 THE COMPARISON WITH EXPERIMENTS AND THE CASE N - * OO 216 6.1.3.2 ON THE BENEFIT OF RECOMBINATION OR WHY SEX MAY BE GOOD 218 6.1.3.3 SYSTEM CONDITIONS OF RECOMBINATION 222 6.1.3.4 THE (P/P,, )-ES AND THE OPTIMAL P CHOICE . . 224 6.1.3.5 THE EXPLORATION BEHAVIOR OF THE (P/P,, A)-ES 229 6.2 THE DOMINANT (P/P D , X)-ES 232 6.2.1 A FIRST APPROACH TO THE ANALYSIS OF THE (P/P D , X)-ES . 232 6.2.1.1 THE (P/P D , )-ES ALGORITHM AND THE DEFINITION OF IP LI / TTDT X 232 6.2.1.2 A SIMPLE MODEL FOR THE ANALYSIS OF THE (P./P D ,X)-ES 233 6.2.1.3 THE ISOTROPIC SURROGATE MUTATIONS 235 6.2.1.4 THE PROGRESS RATE F* FL/FIDA 237 6.2.2 THE DISCUSSION OF THE (P/P D , A)-ES 239 6.2.2.1 THE COMPARISON WITH EXPERIMENTS AND THE CASE N - OO 239 6.2.2.2 THE MISR PRINCIPLE, THE GENETIC DRIFT, AND THE GR HYPOTHESIS 240 6.3 THE ASYMPTOTIC PROPERTIES OF THE (P/P, A)-ES 246 6.3.1 THE C M/MJA COEFFICIENT 247 6.3.1.1 THE ASYMPTOTIC EXPANSION OF THE C N/N, COEFFICIENT 247 6.3.1.2 THE ASYMPTOTIC ORDER OF THE C N/N, COEFFICIENTS 250 6.3.2 THE ASYMPTOTIC PROGRESS LAW 250 6.3.3 FITNESS EFFICIENCY AND THE OPTIMAL I? CHOICE 252 6.3.3.1 ASYMPTOTIC FITNESS EFFICIENCY T? M / M] A F THE (P/P, )-ES 252 6.3.3.2 THE RELATION TO THE (1 + 1)-ES 252 6.3.4 THE DYNAMICS AND THE TIME COMPLEXITY OF THE (P/P,, A)-ES 255 7. THE (1, A)-O--SELF-ADAPTATION 257 7.1 INTRODUCTION 257 7.1.1 CONCEPTS OF CR-CONTROL 257 XVIII CONTENTS 7.1.2 THE ^-SELF-ADAPTATION 259 7.1.3 THE (1, A)-CTSA ALGORITHM 261 7.1.4 OPERATORS FOR THE MUTATION OF THE MUTATION STRENGTH . 261 7.2 THEORETICAL FRAMEWORK FOR THE ANALYSIS OF THE CRSA 263 7.2.1 THE EVOLUTIONARY DYNAMICS OF THE (1, A)-CRSA-ES 264 7.2.1.1 THE R EVOLUTION 265 7.2.1.2 THE , EVOLUTION 266 7.2.2 THE MICROSCOPIC ASPECTS 268 7.2.2.1 THE DENSITY P 1; I(R) OF A SINGLE DESCENDANT... 269 7.2.2.2 THE TRANSITION DENSITY PI-X(R) 270 7.2.2.3 THE TRANSITION DENSITY PI ; A(C) 271 7.2.2.4 THE V?W AND ^ (FC) -SAR FUNCTIONS 272 7.3 DETERMINATION OF THE PROGRESS RATE AND THE SAR 275 7.3.1 PROGRESS INTEGRALS (K) 275 7.3.1.1 NUMERICAL EXAMPLES FOR THE PROGRESS RATE IP* 275 7.3.1.2 AN ANALYTIC IF* FORMULA FOR P A = P 11 , X = 2 . . 276 7.3.1.3 THE R - 0 AND (3 - * 0 APPROXIMATION FOR D* . 279 7.3.2 THE SAR FUNCTIONS / (FC 280 7.3.2.1 NUMERICAL EXAMPLES FOR T/^ 1 , DISCUSSION, AND COMPARISON WITH EXPERIMENTS 280 7.3.2.2 AN ANALYTIC IP FORMULA FOR P A = P U , X = 2. . . 283 7.3.2.3 BOUNDS FOR V 286 7.3.2.4 ANALYTIC APPROXIMATION OF 4 ^ FOR SMALL ^* AND R - GENERAL ASPECTS 289 7.3.2.5 APPROXIMATIONS FOR IP, T/ ( 2 AND D^ 294 7.4 THE (1, A)-CTSA EVOLUTION (I) - DYNAMICS IN THE DETERMINISTIC APPROXIMATION 299 7.4.1 THE EVOLUTION EQUATIONS OF THE (1, A)-ASA-ES 299 7.4.2 THE ES IN THE STATIONARY STATE 300 7.4.2.1 DETERMINING THE STATIONARY STATE 300 7.4.2.2 OPTIMAL ES PERFORMANCE AND THE L/ /N RULE 302 7.4.2.3 THE DIFFERENTIAL EQUATION OF THE A EVOLUTION, THE TRANSIENT BEHAVIOR FOR SMALL ^ (0) ^* S , AND THE STATIONARY R DYNAMICS 303 7.4.2.4 APPROACHING THE STEADY-STATE FROM C* » S . 308 7.5 THE (1, A)-CRSA EVOLUTION (II) - DYNAMICS WITH FLUCTUATIONS . 309 7.5.1 MOTIVATION 309 7.5.2 CHAPMAN-KOLMOGOROV EQUATION AND TRANSITION DENSITIES 309 7.5.3 MEAN VALUE DYNAMICS OF THE R EVOLUTION 313 7.5.4 MEAN VALUE DYNAMICS OF THE ;* EVOLUTION 315 7.5.5 APPROXIMATE EQUATIONS FOR THE STATIONARY A^ STATE .. 317 7.5.5.1 THE INTEGRAL EQUATION OF THE STATIONARY P( CONTENTS XIX 7.5.5.2 AN APPROACH FOR SOLVING THE MOMENTUM EQUATIONS 319 7.5.6 DISCUSSION OF THE STATIONARY STATE AND THE 1/Y/N RULE 320 7.5.6.1 COMPARISON WITH ES EXPERIMENTS 320 7.5.6.2 SPECIAL ANALYTICAL CASES 321 7.5.6.3 THE R-SCALING RULE 323 7.6 FINAL REMARKS ON THE A SELF-ADAPTATION 324 APPENDICES 327 A. INTEGRALS 329 A.I DEFINITE INTEGRALS OF THE NORMAL DISTRIBUTION 329 A.2 INDEFINITE INTEGRALS OF THE NORMAL DISTRIBUTION 331 A.2.1 INTEGRALS OF THE FORM I A ^(X) = F_ = ^ T 3 ER^^DT .... 331 A.2.2 INTEGRALS OF THE FORM I${X) = F_ = ^ T 0 E~^^(T) DT .... 332 A.3 SOME INTEGRAL IDENTITIES 334 B. APPROXIMATIONS 337 B.I FREQUENTLY USED TAYLOR EXPANSIONS 337 B.2 THE HERMITE POLYNOMIALS HE FE (A;) 339 B.3 CUMULANTS, MOMENTS, AND APPROXIMATIONS 341 B.3.1 FUNDAMENTAL RELATIONS 341 B.3.2 THE WEIGHT COEFFICIENTS FOR THE DENSITY APPROXIMA- TION OF A STANDARDIZED RANDOM VARIABLE 344 B.4 APPROXIMATION OF THE QUANTILE FUNCTION 349 C. THE NORMAL DISTRIBUTION 351 C.I AF(0,L) DISTRIBUTION FUNCTION, GAUSSIAN INTEGRAL, AND ERROR FUNCTION 351 C.2 ASYMPTOTIC ORDER OF THE MOMENTS OF ^ 354 C.3 PRODUCT MOMENTS OF CORRELATED GAUSSIAN MUTATIONS 355 C.3.1 FUNDAMENTAL RELATIONS 355 C.3.2 DERIVATION OF THE PRODUCT MOMENTS 356 D. (1, A)-PROGRESS COEFFICIENTS 359 D.I ASYMPTOTICS OF THE PROGRESS COEFFICIENTS D X 359 D.I.I AN ASYMPTOTIC EXPANSION FOR THE D X COEFFICIENTS.. . . 359 D.I.2 THE ASYMPTOTIC C HX AND D[ 2 { FORMULAE 360 D.I.3 AN ALTERNATIVE DERIVATION FOR C X 361 D.2 TABLE OF PROGRESS COEFFICIENTS OF THE (1, A)-ES 363 REFERENCES 365 INDEX 37 3
any_adam_object 1
author Beyer, Hans-Georg
author_facet Beyer, Hans-Georg
author_role aut
author_sort Beyer, Hans-Georg
author_variant h g b hgb
building Verbundindex
bvnumber BV013652747
callnumber-first Q - Science
callnumber-label QA76
callnumber-raw QA76.618
callnumber-search QA76.618
callnumber-sort QA 276.618
callnumber-subject QA - Mathematics
classification_rvk ST 120
ST 134
ST 285
ST 301
WH 2500
classification_tum BIO 175f
BIO 445f
ctrlnum (OCoLC)247928112
(DE-599)BVBBV013652747
dewey-full 005.1
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 005 - Computer programming, programs, data, security
dewey-raw 005.1
dewey-search 005.1
dewey-sort 15.1
dewey-tens 000 - Computer science, information, general works
discipline Biologie
Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01772nam a22004818c 4500</leader><controlfield tag="001">BV013652747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120320 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">010320s2001 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">960875832</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540672974</subfield><subfield code="9">3-540-67297-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247928112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013652747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-525</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.618</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 120</subfield><subfield code="0">(DE-625)143585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WH 2500</subfield><subfield code="0">(DE-625)148643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 175f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 445f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beyer, Hans-Georg</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The theory of evolution strategies</subfield><subfield code="b">with 9 tables</subfield><subfield code="c">Hans-Georg Beyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 380 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Natural computing series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionsstrategie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary programming (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsstrategie</subfield><subfield code="0">(DE-588)4015930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionsstrategie</subfield><subfield code="0">(DE-588)4015930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009328407&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009328407</subfield></datafield></record></collection>
id DE-604.BV013652747
illustrated Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 3540672974
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009328407
oclc_num 247928112
open_access_boolean
owner DE-703
DE-29T
DE-91
DE-BY-TUM
DE-824
DE-19
DE-BY-UBM
DE-M347
DE-634
DE-11
DE-525
DE-20
owner_facet DE-703
DE-29T
DE-91
DE-BY-TUM
DE-824
DE-19
DE-BY-UBM
DE-M347
DE-634
DE-11
DE-525
DE-20
physical XIX, 380 S. graph. Darst.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer
record_format marc
series2 Natural computing series
spellingShingle Beyer, Hans-Georg
The theory of evolution strategies with 9 tables
Evolutionsstrategie
Computer algorithms
Evolutionary programming (Computer science)
Evolutionsstrategie (DE-588)4015930-9 gnd
subject_GND (DE-588)4015930-9
title The theory of evolution strategies with 9 tables
title_auth The theory of evolution strategies with 9 tables
title_exact_search The theory of evolution strategies with 9 tables
title_full The theory of evolution strategies with 9 tables Hans-Georg Beyer
title_fullStr The theory of evolution strategies with 9 tables Hans-Georg Beyer
title_full_unstemmed The theory of evolution strategies with 9 tables Hans-Georg Beyer
title_short The theory of evolution strategies
title_sort the theory of evolution strategies with 9 tables
title_sub with 9 tables
topic Evolutionsstrategie
Computer algorithms
Evolutionary programming (Computer science)
Evolutionsstrategie (DE-588)4015930-9 gnd
topic_facet Evolutionsstrategie
Computer algorithms
Evolutionary programming (Computer science)
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009328407&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT beyerhansgeorg thetheoryofevolutionstrategieswith9tables