Complex analysis in one variable

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Narasimhan, Raghavan 1937- (VerfasserIn), Nievergelt, Yves 1954- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Birkhäuser 2001
Ausgabe:2. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV013551356
003 DE-604
005 20140404
007 t
008 010124s2001 ad|| |||| 00||| eng d
020 |a 0817641645  |9 0-8176-4164-5 
020 |a 3764341645  |9 3-7643-4164-5 
035 |a (OCoLC)45223595 
035 |a (DE-599)BVBBV013551356 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-20  |a DE-91G  |a DE-703  |a DE-824  |a DE-355  |a DE-83  |a DE-188  |a DE-11 
050 0 |a QA331 
082 0 |a 515/.9  |2 21 
084 |a SK 700  |0 (DE-625)143253:  |2 rvk 
084 |a SK 750  |0 (DE-625)143254:  |2 rvk 
084 |a SK 780  |0 (DE-625)143255:  |2 rvk 
084 |a MAT 300f  |2 stub 
084 |a 30-01  |2 msc 
100 1 |a Narasimhan, Raghavan  |d 1937-  |e Verfasser  |0 (DE-588)107634015  |4 aut 
245 1 0 |a Complex analysis in one variable  |c Raghavan Narasimhan ; Yves Nievergelt 
250 |a 2. ed. 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 2001 
300 |a XIV, 381 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Analyse mathématique 
650 4 |a Análisis matemático 
650 4 |a Fonctions d'une variable complexe 
650 4 |a Funciones de variables complejas 
650 4 |a Functions of complex variables 
650 4 |a Mathematical analysis 
650 0 7 |a Funktion  |g Mathematik  |0 (DE-588)4071510-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexe Variable  |0 (DE-588)4164905-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mehrere komplexe Variable  |0 (DE-588)4169285-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionentheorie  |0 (DE-588)4018935-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Komplexe Variable  |0 (DE-588)4164905-9  |D s 
689 0 1 |a Funktionentheorie  |0 (DE-588)4018935-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Funktion  |g Mathematik  |0 (DE-588)4071510-3  |D s 
689 1 1 |a Mehrere komplexe Variable  |0 (DE-588)4169285-8  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Nievergelt, Yves  |d 1954-  |e Verfasser  |0 (DE-588)121171108  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009253500&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-009253500 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 300f 2001 A 23917
DE-BY-TUM_katkey 1195762
DE-BY-TUM_media_number 040010577072
_version_ 1816712079855321088
adam_text Contents Preface to the Second Edition ix Preface to the First Edition xi Notation and Terminology xiii I Complex Analysis in One Variable Raghavan Narasimhan 1 1 Elementary Theory of Holomorphic Functions 3 1 Some basic properties of C-differentiable and holomorphic functions 4 2 Integration along curves 10 3 Fundamental properties of holomorphic functions 22 4 The theorems of Weierstrass and Montel 32 5 Meromorphic functions 36 6 The Looman-Menchoff theorem 43 2 Covering Spaces and the Monodromy Theorem 53 1 Covering spaces and the lifting of curves 53 2 The sheaf of germs of holomorphic functions 55 3 Covering spaces and integration along curves 57 4 The monodromy theorem and the homotopy form of Cauchy s theorem 60 5 Applications of the monodromy theorem 63 3 The Winding Number and the Residue Theorem 69 1 The winding number 69 2 The residue theorem 73 3 Applications of the residue theorem 79 4 Picard s Theorem 87 vi Contents 5 Inhomogeneous Cauchy-Riemann Equation and Runge s Theorem 97 1 Partitions of unity 97 2 The equation §§ = / 99 3 Runge s theorem 103 4 The homology form of Cauchy s theorem Ill 6 Applications of Runge s Theorem 115 1 The Mittag-Leffler theorem 115 2 The cohomology form of Cauchy s theorem 119 3 The theorem of Weierstrass 121 4 Ideals in H(Q) 127 7 Riemann Mapping Theorem and Simple Connectedness in the Plane 139 1 Analytic automorphisms of the disc and of the annulus 139 2 The Riemann mapping theorem 143 3 Simply connected plane domains 145 8 Functions of Several Complex Variables 151 9 Compact Riemann Surfaces 161 1 Definitions and basic theorems 161 2 Meromorphic functions 166 3 The cohomology group // (it, O) 167 4 A theorem from functional analysis 171 5 The finiteness theorem 176 6 Meromorphic functions on a compact Riemann surface 179 10 The Corona Theorem 187 1 The Poisson integral and the theorem of F. and M. Riesz 188 2 The corona theorem 197 11 Subharmonic Functions and the Dirichlet Problem 209 1 Semi-continuous functions 209 2 Harmonic functions and Harnack s principle 212 3 Convex functions 215 4 Subharmonic functions: Definition and basic properties 219 5 Subharmonic functions: Further properties and application to convexity theorems 227 6 Harmonic and subharmonic functions on Riemann surfaces 237 7 The Dirichlet problem 237 8 The Rado-Cartan theorem 244 Appendix: Baire s Theorem 253 Contents vii II Exercises Yves Nievergelt 255 Introduction 257 0 Review of Complex Numbers 259 1 Algebraic properties of the complex numbers 259 2 Complex equations of generalized circles 261 3 Complex fractional linear transformations 262 4 Topological concepts 265 1 Elementary Theory of Holomorphic Functions 267 1 Some basic properties of C-differentiable and holomorphic functions 267 1.1 Complex derivatives and Cauchy-Riemann equations 267 1.2 Differentials and conformal maps 269 1.3 Conformal maps 270 1.4 Radius of convergence of power series 275 1.5 Exponential, trigonometric, and dilogarithm functions .... 277 2 Integration along curves 278 2.1 Complex line integrals 278 2.2 Complex derivatives of line integrals 279 2.3 Remainder of complex Taylor polynomials 281 2.4 H. A. Schwarz s reflection principle 281 3 Fundamental properties of holomorphic functions 282 3.1 The complex exponential function 282 3.2 Holomorphic functions 284 3.3 Bounds on the size of roots of polynomials 285 3.4 Principal branch of the complex square root 287 3.5 Complex square roots in celestial mechanics 288 4 Theorems of Weierstrass and Montel 290 5 Meromorphic functions 290 5.1 A complex Newton s method 291 5.2 Sequences of complex numbers 293 2 Covering Spaces and the Monodromy Theorem 297 1 Covering spaces and the lifting of curves 297 1.1 Examples of real or complex manifolds 297 1.2 Covering maps 299 2 The sheaf of germs of holomorphic functions 299 3 Covering spaces and integration along curves 300 4 The monodromy theorem and the homotopy form of Cauchy s theorem 303 5 Applications of the monodromy theorem 303 viii Contents 3 The Winding Number and the Residue Theorem 305 1 The winding number 305 2 The residue theorem 307 3 Applications of the residue theorem 310 4 Picard s Theorem 313 5 The Inhomogeneous Cauchy-Riemann Equation and Runge s Theorem 315 1 Partitions of unity 315 2 The equation 3«/3z = 0 316 2.1 Complex differential forms 316 2.2 Rouche s theorem 321 2.3 Inhomogeneous Cauchy-Riemann equations 322 3 Runge s theorem 323 6 Applications of Runge s Theorem 331 1 The Mittag-Leffier theorem 331 2 The cohomology form of Cauchy s theorem 332 3 The theorem of Weierstrass 332 4 Ideals in H(Cl) 335 7 The Riemann Mapping Theorem and Simple Connectedness in the Plane 337 1 Analytic automorphisms of the disc and of the annulus 337 2 The Riemann mapping theorem 340 3 Simply connected plane domains 342 8 Functions of Several Complex Variables 343 9 Compact Riemann Surfaces 351 1 Definitions and basic theorems 351 3 The cohomology group H (ii, 0) 355 6 Meromorphic functions on a compact Riemann surface 358 10 The Corona Theorem 361 1 The Poisson integral and the theorem of F. andM. Riesz 361 11 Subharmonic Functions and the Dirichlet Problem 365 Notes for the exercises 369 References for the exercises 373 Index 379
any_adam_object 1
author Narasimhan, Raghavan 1937-
Nievergelt, Yves 1954-
author_GND (DE-588)107634015
(DE-588)121171108
author_facet Narasimhan, Raghavan 1937-
Nievergelt, Yves 1954-
author_role aut
aut
author_sort Narasimhan, Raghavan 1937-
author_variant r n rn
y n yn
building Verbundindex
bvnumber BV013551356
callnumber-first Q - Science
callnumber-label QA331
callnumber-raw QA331
callnumber-search QA331
callnumber-sort QA 3331
callnumber-subject QA - Mathematics
classification_rvk SK 700
SK 750
SK 780
classification_tum MAT 300f
ctrlnum (OCoLC)45223595
(DE-599)BVBBV013551356
dewey-full 515/.9
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.9
dewey-search 515/.9
dewey-sort 3515 19
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02451nam a2200601 c 4500</leader><controlfield tag="001">BV013551356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140404 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">010124s2001 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817641645</subfield><subfield code="9">0-8176-4164-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764341645</subfield><subfield code="9">3-7643-4164-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45223595</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013551356</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)107634015</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex analysis in one variable</subfield><subfield code="c">Raghavan Narasimhan ; Yves Nievergelt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 381 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Análisis matemático</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions d'une variable complexe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Funciones de variables complejas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nievergelt, Yves</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121171108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009253500&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009253500</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV013551356
illustrated Illustrated
indexdate 2024-11-25T17:19:56Z
institution BVB
isbn 0817641645
3764341645
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009253500
oclc_num 45223595
open_access_boolean
owner DE-20
DE-91G
DE-BY-TUM
DE-703
DE-824
DE-355
DE-BY-UBR
DE-83
DE-188
DE-11
owner_facet DE-20
DE-91G
DE-BY-TUM
DE-703
DE-824
DE-355
DE-BY-UBR
DE-83
DE-188
DE-11
physical XIV, 381 S. Ill., graph. Darst.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Birkhäuser
record_format marc
spellingShingle Narasimhan, Raghavan 1937-
Nievergelt, Yves 1954-
Complex analysis in one variable
Analyse mathématique
Análisis matemático
Fonctions d'une variable complexe
Funciones de variables complejas
Functions of complex variables
Mathematical analysis
Funktion Mathematik (DE-588)4071510-3 gnd
Komplexe Variable (DE-588)4164905-9 gnd
Mehrere komplexe Variable (DE-588)4169285-8 gnd
Funktionentheorie (DE-588)4018935-1 gnd
subject_GND (DE-588)4071510-3
(DE-588)4164905-9
(DE-588)4169285-8
(DE-588)4018935-1
title Complex analysis in one variable
title_auth Complex analysis in one variable
title_exact_search Complex analysis in one variable
title_full Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt
title_fullStr Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt
title_full_unstemmed Complex analysis in one variable Raghavan Narasimhan ; Yves Nievergelt
title_short Complex analysis in one variable
title_sort complex analysis in one variable
topic Analyse mathématique
Análisis matemático
Fonctions d'une variable complexe
Funciones de variables complejas
Functions of complex variables
Mathematical analysis
Funktion Mathematik (DE-588)4071510-3 gnd
Komplexe Variable (DE-588)4164905-9 gnd
Mehrere komplexe Variable (DE-588)4169285-8 gnd
Funktionentheorie (DE-588)4018935-1 gnd
topic_facet Analyse mathématique
Análisis matemático
Fonctions d'une variable complexe
Funciones de variables complejas
Functions of complex variables
Mathematical analysis
Funktion Mathematik
Komplexe Variable
Mehrere komplexe Variable
Funktionentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009253500&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT narasimhanraghavan complexanalysisinonevariable
AT nievergeltyves complexanalysisinonevariable