Cohomological theory of dynamical Zeta functions

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Juhl, Andreas (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel [u.a.] Birkhäuser 2001
Schriftenreihe:Progress in mathematics 194
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008cb4500
001 BV013444833
003 DE-604
005 20010810
007 t|
008 001114s2001 gw d||| |||| 00||| eng d
016 7 |a 959930973  |2 DE-101 
020 |a 376436405X  |9 3-7643-6405-X 
035 |a (OCoLC)45223589 
035 |a (DE-599)BVBBV013444833 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-29T  |a DE-355  |a DE-824  |a DE-11  |a DE-188 
050 0 |a QA351 
082 0 |a 515/.56  |2 21 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
100 1 |a Juhl, Andreas  |e Verfasser  |4 aut 
245 1 0 |a Cohomological theory of dynamical Zeta functions  |c Andreas Juhl 
264 1 |a Basel [u.a.]  |b Birkhäuser  |c 2001 
300 |a X, 709 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in mathematics  |v 194 
650 4 |a Functions, Zeta 
650 4 |a Homology theory 
650 0 7 |a Zetafunktion  |0 (DE-588)4190764-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Kohomologietheorie  |0 (DE-588)4164610-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Zetafunktion  |0 (DE-588)4190764-4  |D s 
689 0 1 |a Kohomologietheorie  |0 (DE-588)4164610-1  |D s 
689 0 |5 DE-604 
830 0 |a Progress in mathematics  |v 194  |w (DE-604)BV000004120  |9 194 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009177476&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009177476 

Datensatz im Suchindex

_version_ 1819755084588777472
adam_text Contents Preface ix Chapter 1. Introduction 1 1.1. The dynamical zeta functions 1 1.2. The motivations of the cohomological theory 4 1.2.1. Quantization of chaos 4 1.2.2. Uniform descriptions of the divisors of zeta functions 7 1.3. The contents of the book 13 1.3.1. Spectral theory on X, Lefschetz formulas on SX and F invariant distributions on the ideal boundary Sn~l 13 1.3.2. Harmonic currents and divisors of the zeta functions. The main ideas 25 1.3.3. Harmonic currents and divisors of the zeta functions. The results and the conjectures 30 Chapter 2. Preliminaries 63 2.1. General notation 63 2.2. Lie theory related to the conformal group 63 2.3. Hyperbolic spaces as Riemannian manifolds and symmetric spaces 67 2.4. n~ homology, n~ cohomology and Osborne s character formula 75 2.5. Induced representations and differential intertwining operators .... 76 2.6. The classification of the unitary irreducible representations of the Lorentz group SO(l,n)° 79 Chapter 3. Zeta Functions of the Geodesic Flow of Compact Locally Symmetric Manifolds 87 3.1. Spectral theory of operators 88 3.2. The dynamical Lefschetz formula 103 3.3. Explicit formulas for the divisor in terms of complexes on the ideal boundary 177 3.4. Patterson s conjecture 218 Chapter 4. Operators and Complexes 231 4.1. Equivariant differential operators and equivariant differential complexes for the twisted geodesic flows 231 4.1.1. The de Rham complexes and the canonical complexes 231 vi Contents 4.1.2. Geometry of the operators d~,6~,D+ and A+ 262 4.1.2.1. The operator Dp and the spaces CC{XP O)(SY, Va) 264 4.1.2.2. The complexes on CT^p(SY, Va) 276 4.1.2.3. The Euler operator 281 4.1.2.4. More commutator relations 283 4.1.2.5. The operators D+ and DCT 288 4.1.2.6. The operators 6~(fl~A) and fl~ A 8~ 290 4.1.2.7. The spaces S{^0) (SY, Va) 292 4.2. The Bruhat and Iwasawa models 296 4.2.1. The Bruhat models of the operators D+ and ? 297 4.2.2. The Iwasawa models of the operators D+ and ? 315 Chapter 5. The Verma Complexes on SY and SX 331 5.1. The Bruhat models of the Verma complexes on SY 331 5.2. The Iwasawa models of the Verma complexes on SY 343 5.3. The Verma complexes on SX 360 Chapter 6. Harmonic Currents and Canonical Complexes 373 6.1. Equivariant Hodge decomposition of CC^J_%(SY) for A 0 No • • • ¦ 374 6.2. Equivariant right parametrices of D+ and 6~ for A £ —No 392 6.3. Hodge decomposition of CC(Ap 0) (SX) for A £ No 410 6.4. Hodge decomposition of CC^p 0) (SX) for A € No 412 6.5. The system 3~uj = 0, Do; = 0 and exotic currents 432 6.6. The functional equation as an index formula 452 Chapter 7. Divisors and Harmonic Currents 469 7.1. The divisor of the Selberg zeta function 469 7.2. The divisor of the Ruelle zeta function 480 7.3. Harmonic currents which are constant on the leaves of J*~ 486 7.4. The Ruelle zeta functions of the geodesic flow of T H4 493 Chapter 8. Further Developments and Open Problems 519 8.1. The divisor of Zs for convex cocompact groups 519 8.1.1. Scattering operators, extension operators and invariant currents on the limit set 525 8.1.2. F cohomology of holomorphic families of hyperfunctions on the limit set 569 8.1.3. The embedded case 585 8.1.4. F cohomology and harmonic currents 607 8.2. Miscellaneous problems and comments 624 Contents vii 8.2.1. The relations between the various definitions of twisted Selberg zeta functions 624 8.2.2. Dynamical theta functions 625 8.2.3. Zeta functions and zeta regularized determinants 637 8.2.4. Closed ranges in the tangential complex of the stable foliation 639 8.2.5. The spaces CV{xn_l0)(SX) and the operators H0{s) 640 8.2.6. Hodge decompositions 644 8.2.7. The equation d~u = 6 in the twisted case 647 8.2.8. Patterson s conjecture as a fixed point formula 650 8.2.9. Topological singularities and group cohomology 652 8.2.10. Meromorphic extension of Selberg zeta functions and smoothness of T* 655 8.2.11. Zeta functions of the geodesic flow of rank one spaces 656 8.2.12. Lefschetz formulas and zeta functions for flows associated to locally symmetric spaces of higher rank 657 8.2.13. Zeta functions for negative curvature spaces 661 8.2.14. Lefschetz fixed point formulas for foliations 666 8.3. Some historical comments 667 Chapter 9. A Summary of Important Formulas 673 Bibliography 687 Index of Equations 703 Index 707
any_adam_object 1
author Juhl, Andreas
author_facet Juhl, Andreas
author_role aut
author_sort Juhl, Andreas
author_variant a j aj
building Verbundindex
bvnumber BV013444833
callnumber-first Q - Science
callnumber-label QA351
callnumber-raw QA351
callnumber-search QA351
callnumber-sort QA 3351
callnumber-subject QA - Mathematics
classification_rvk SK 180
SK 370
ctrlnum (OCoLC)45223589
(DE-599)BVBBV013444833
dewey-full 515/.56
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.56
dewey-search 515/.56
dewey-sort 3515 256
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01632nam a22004458cb4500</leader><controlfield tag="001">BV013444833</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010810 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">001114s2001 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959930973</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">376436405X</subfield><subfield code="9">3-7643-6405-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45223589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013444833</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA351</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.56</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Juhl, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cohomological theory of dynamical Zeta functions</subfield><subfield code="c">Andreas Juhl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 709 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">194</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Zeta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zetafunktion</subfield><subfield code="0">(DE-588)4190764-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">194</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">194</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009177476&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009177476</subfield></datafield></record></collection>
id DE-604.BV013444833
illustrated Illustrated
indexdate 2024-12-23T15:27:51Z
institution BVB
isbn 376436405X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009177476
oclc_num 45223589
open_access_boolean
owner DE-29T
DE-355
DE-BY-UBR
DE-824
DE-11
DE-188
owner_facet DE-29T
DE-355
DE-BY-UBR
DE-824
DE-11
DE-188
physical X, 709 S. graph. Darst.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Birkhäuser
record_format marc
series Progress in mathematics
series2 Progress in mathematics
spellingShingle Juhl, Andreas
Cohomological theory of dynamical Zeta functions
Progress in mathematics
Functions, Zeta
Homology theory
Zetafunktion (DE-588)4190764-4 gnd
Kohomologietheorie (DE-588)4164610-1 gnd
subject_GND (DE-588)4190764-4
(DE-588)4164610-1
title Cohomological theory of dynamical Zeta functions
title_auth Cohomological theory of dynamical Zeta functions
title_exact_search Cohomological theory of dynamical Zeta functions
title_full Cohomological theory of dynamical Zeta functions Andreas Juhl
title_fullStr Cohomological theory of dynamical Zeta functions Andreas Juhl
title_full_unstemmed Cohomological theory of dynamical Zeta functions Andreas Juhl
title_short Cohomological theory of dynamical Zeta functions
title_sort cohomological theory of dynamical zeta functions
topic Functions, Zeta
Homology theory
Zetafunktion (DE-588)4190764-4 gnd
Kohomologietheorie (DE-588)4164610-1 gnd
topic_facet Functions, Zeta
Homology theory
Zetafunktion
Kohomologietheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009177476&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000004120
work_keys_str_mv AT juhlandreas cohomologicaltheoryofdynamicalzetafunctions