Abstract convexity and global optimization

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rubinov, Aleksandr M. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Dordrecht [u.a.] Kluwer 2000
Schriftenreihe:Nonconvex optimization and its applications 44
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV013409142
003 DE-604
005 20070108
007 t|
008 001030s2000 xx d||| |||| 00||| eng d
020 |a 079236323X  |9 0-7923-6323-X 
035 |a (OCoLC)43864387 
035 |a (DE-599)BVBBV013409142 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-824  |a DE-706  |a DE-11 
050 0 |a QA402.5 
082 0 |a 519.3  |2 21 
084 |a SK 870  |0 (DE-625)143265:  |2 rvk 
100 1 |a Rubinov, Aleksandr M.  |e Verfasser  |4 aut 
245 1 0 |a Abstract convexity and global optimization  |c by Alexander Rubinov 
264 1 |a Dordrecht [u.a.]  |b Kluwer  |c 2000 
300 |a XVIII, 490 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Nonconvex optimization and its applications  |v 44 
650 7 |a Convexe functies  |2 gtt 
650 7 |a Mathematische programmering  |2 gtt 
650 7 |a Optimaliseren  |2 gtt 
650 4 |a Convex programming 
650 4 |a Mathematical optimization 
650 0 7 |a Globale Optimierung  |0 (DE-588)4140067-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Hülle  |0 (DE-588)4312637-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Globale Optimierung  |0 (DE-588)4140067-7  |D s 
689 0 1 |a Konvexe Hülle  |0 (DE-588)4312637-6  |D s 
689 0 |5 DE-604 
830 0 |a Nonconvex optimization and its applications  |v 44  |w (DE-604)BV010085908  |9 44 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009150149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009150149 

Datensatz im Suchindex

_version_ 1819607492473126912
adam_text IMAGE 1 ABSTRACT CONVEXITY AND GLOBAL OPTIMIZATION BY ALEXANDER RUBINOV SCHOOL OF INFORMATION TECHNOLOGY AND MATHEMATICAL SCIENCES, UNIVERSITY OF BALLARAT, VICTORIA, AUSTRALIA II KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON IMAGE 2 CONTENTS PREFACE XI ACKNOWLEDGMENT XVII 1. AN INTRODUCTION TO ABSTRACT CONVEXITY 1 1.1 OVERVIEW 1 1.2 PRELIMINARIES 2 1.3 ABSTRACT CONVEX FUNCTIONS AND SETS 3 1.4 SUBDIFFERENTIABILITY 9 1.5 CONJUGATION 12 1.6 ABSTRACT CONCAVE FUNCTIONS AND INFIMA OF ABSTRACT CONVEX FUNCTIONS 13 2. ELEMENTS OF MONOTONIC ANALYSIS: IPH FUNCTIONS AND NORMAL SETS 15 2.1 INTRODUCTION 15 2.2 INCREASING POSITIVELY HOMOGENEOUS FUNCTIONS DEFINED ON POSITIVE ORTHANT 18 2.2.1 OVERVIEW 18 2.2.2 PRELIMINARIES 18 2.2.3 IPH FUNCTIONS 19 2.2.4 MIN-TYPE FUNCTIONS AND IPH FUNCTIONS 23 2.2.5 ABSTRACT CONVEXITY WITH RESPECT TO THE SET OF MINTYPE FUNCTIONS 26 2.2.6 LEVEL SETS OF IPH FUNCTIONS 28 2.2.7 POLARITY FOR NORMAL SETS AND IPH FUNCTIONS 30 2.2.8 SUPPORT SETS 33 2.2.9 SUBDIFFERENTIAL 36 2.2.10 CONCAVITY OF THE POLAR FUNCTION 37 2.2.11 COMPARISON WITH CONVEX ANALYSIS 39 2.3 INCREASING POSITIVELY HOMOGENEOUS FUNCTIONS DEFINED ON THE NON-NEGATIVE ORTHANT 42 2.3.1 OVERVIEW 42 2.3.2 PRELIMINARIES 43 V IMAGE 3 VI ABSTRACT CONVEXITY 2.4 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 L-CONVEX FUNCTION SUPPORT SETS TWO KINDS OF NORMALITY PROPERTIES OF THE SUPPORT SETS SUBDIFFERENTIALS OF IPH FUNCTIONS ABSTRACT CONCAVITY AND SUPERDIFFERENTIALS BEST APPROXIMATION BY NORMAL SETS 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 OVERVIEW PRELIMINARIES DISTANCE TO A NORMAL SET SEPARATION DISTANCE TO THE UNION AND THE INTERSECTION OF NORMAL SETS 44 46 47 50 54 57 60 60 61 63 66 71 3. ELEMENTS OF MONOTONIC ANALYSIS: MONOTONIC FUNCTIONS 75 3.1 INTRODUCTION 75 3.2 INCREASING CO-RADIANT FUNCTIONS 77 3.2.1 OVERVIEW 77 3.2.2 DEFINITION AND PROPERTIES OF ICR FUNCTIONS 77 3.2.3 ICR FUNCTIONS AND IPH FUNCTIONS 80 3.2.4 ABSTRACT CONVEXITY OF ICR FUNCTIONS 81 3.3 INCREASING CONVEX-ALONG-RAYS FUNCTIONS 82 3.3.1 OVERVIEW 82 3.3.2 ICAR FUNCTIONS: DEFINITION, EXAMPLES AND SOME PROPERTIES 83 3.3.3 ICAR FUNCTIONS AS ABSTRACT CONVEX FUNCTIONS 87 3.3.4 SUBDIFFERENTIABILITY OF ICAR FUNCTIONS 92 3.3.5 SUBDIFFERENTIABILITY OF STRICTLY ICAR FUNCTIONS 93 3.3.6 LIPSCHITZ FUNCTION AND ICAR FUNCTIONS 95 3.4 DECREASING FUNCTIONS 98 3.4.1 OVERVIEW 98 3.4.2 DECREASING FUNCTIONS AND IPH FUNCTIONS 98 3.4.3 MULTIPLICATIVE INF-CONVOLUTION 107 4. APPLICATION TO GLOBAL OPTIMIZATION: LAGRANGE AND PENALTY FUNCTIONS 113 4.1 INTRODUCTION 113 4.2 EXTENDED LAGRANGE AND PENALTY FUNCTIONS 117 4.2.1 OVERVIEW 117 4.2.2 PRELIMINARIES 117 4.2.3 EXTENDED LAGRANGE FUNCTIONS 119 4.2.4 EXTENDED PENALTY FUNCTIONS 123 4.2.5 EXAMPLES 124 4.2.6 SUPPORT SET OF THE DUAL FUNCTION 125 4.2.7 ANOTHER APPROACH 127 4.3 EXTENDED PENALIZATION FOR PROBLEMS WITH ONE CONSTRAINT 128 4.3.1 OVERVIEW 128 4.3.2 PRELIMINARIES 129 IMAGE 4 CONTENTS VN 4.3.3 PERTURBATION FUNCTIONS 131 4.3.4 EXACT PENALIZATION 138 4.3.5 PENALIZATION BY IPH FUNCTIONS PK 144 5. ELEMENTS OF STAR-SHAPED ANALYSIS 153 5.1 INTRODUCTION 153 5.2 RADIANT AND CO-RADIANT SETS AND THEIR GAUGES 155 5.2.1 OVERVIEW 155 5.2.2 RADIANT AND CO-RADIANT SETS 155 5.2.3 RADIATIVE AND CO-RADIATIVE SETS 161 5.2.4 RADIANT SETS WITH LIPSCHITZ CONTINUOUS MINKOWSKI GAUGES 165 5.3 STAR-SHAPED SETS AND CO-STAR-SHAPED SETS 170 5.3.1 OVERVIEW 170 5.3.2 STAR-SHAPED SETS AND THEIR KERNEIS 170 5.3.3 SUM OF STAR-SHAPED SETS AND SUM OF CO-STAR-SHAPED SETS 175 5.4 SEPARATION 180 5.4.1 OVERVIEW 180 5.4.2 CONE-SEPARATION AND SEPARATION BY A FINITE COLLECTION OF LINEAR FUNCTIONS 181 5.4.3 SEPARATION OF STAR-SHAPED SETS 186 5.4.4 SEPARATION OF CO-STAR-SHAPED SETS 191 5.5 ABSTRACT CONVEXITY WITH RESPECT TO GENERAL MIN-TYPE FUNCTIONS 202 5.5.1 OVERVIEW 202 5.5.2 POSITIVELY HOMOGENEOUS ABSTRACT CONVEX FUNCTIONS 203 5.5.3 %-CONVEX FUNCTIONS 211 5.5.4 SUBDIFFERENTIALS OF % N+ I-CONVEX FUNCTIONS 220 5.5.5 ABSTRACT CONVEX SETS 223 5.5.6 OTHER CLASSES OF ABSTRACT CONVEX FUNCTIONS 226 6. SUPREMAL GENERATORS AND THEIR APPLICATIONS 229 6.1 INTRODUCTION 229 6.2 CONTINUOUS AND LOWER SEMICONTINUOUS FUNCTIONS 231 6.2.1 OVERVIEW 231 6.2.2 LOWER SEMICONTINUOUS FUNCTIONS 231 6.2.3 EXAMPLES 237 6.2.4 ICAR EXTENSIONS OF FUNCTIONS DEFINED ON THE UNIT SIMPLEX 239 6.3 SUPREMAL GENERATORS FOR SPACES OF HOMOGENEOUS FUNCTIONS 240 6.3.1 OVERVIEW 240 6.3.2 PRELIMINARIES 241 6.3.3 HOMOGENEOUS FUNCTIONS OF DEGREE ONE 242 6.3.4 SYMMETRIE POSITIVELY HOMOGENEOUS FUNCTIONS OF DEGREE TWO 244 6.4 SOME APPLICATIONS OF SUPREMAL GENERATORS 247 IMAGE 5 VIII ABSTRACT CONVEXITY 6.4.1 OVERVIEW 247 6.4.2 CONVERGENCE OF SEQUENCES OF POSITIVE FUNCTIONALS 248 6.4.3 THE SUPREMAL RANK OF A COMPACT SET 251 6.5 APPLICATION TO HADAMARD-TYPE INEQUALITIES 254 6.5.1 OVERVIEW 254 6.5.2 HADAMARD-TYPE INEQUALITIES FOR CONVEX FUNCTIONS 255 6.5.3 QUASICONVEX FUNCTIONS AND P-FUNCTIONS 256 6.5.4 INEQUALITIES OF HADAMARD TYPE FOR P-FUNCTIONS AND QUASICONVEX FUNCTIONS 262 6.5.5 INEQUALITY OF HADAMARD TYPE FOR ICAR FUNCTIONS 265 7. FURTHER ABSTRACT CONVEXITY 271 7.1 INTRODUCTION 271 7.2 ABSTRACT CONVEXITY WITH RESPECT ON A SUBSET 272 7.2.1 OVERVIEW 272 7.2.2 BASIC DEFINITIONS AND PROPERTIES 273 7.2.3 SUBDIFFERENTIABILITY 278 7.2.4 CONJUGATION AND APPROXIMATE SUBDIFFERENTIALS 282 7.2.5 ABSTRACT CONVEXITY AND GLOBAL MINIMIZATION 288 7.2.6 MINIMAX RESULT FOR ABSTRACT CONVEX FUNCTIONS 290 7.2.7 POSITIVELY HOMOGENEOUS FUNCTIONS 291 7.2.8 POSITIVELY HOMOGENEOUS EXTENSION 294 7.2.9 POLARITY FOR FUNCTIONS AND SETS, WHICH ARE ABSTRACT CONVEX WITH RESPECT TO A CONIC SET OF POSITIVELY HOMOGENEOUS FUNCTIONS 297 7.3 SOME CLASSES OF ABSTRACT CONVEX FUNCTIONS 304 7.3.1 OVERVIEW 304 7.3.2 LINEAR FUNCTIONS - GENERATING SUBLINEARITY 304 7.3.3 AFFINE FUNCTIONS - GENERATING CONVEXITY 308 7.3.4 MIN-TYPE FUNCTIONS - GENERATING CONVEXITY-ALONGRAYS 315 7.3.5 TWO-STEP FUNCTIONS - GENERATING QUASICONVEXITY. ABSTRACT CONVEX FUNCTIONS 316 7.3.6 TWO-STEP FUNCTIONS - GENERATING QUASICONVEXITY. ABSTRACT CONVEX SETS 321 7.3.7 TWO-STEP FUNCTIONS - GENERATING QUASICONVEXITY. ABSTRACT SUBDIFFERENTIALS 329 7.3.8 INFIMA OF FAMILIES OF ABSTRACT CONVEX FUNCTIONS 333 7.4 MINKOWSKI DUALITY, C 2 -LATTICES AND SEMILINEAR LATTICES 335 7.4.1 OVERVIEW 335 7.4.2 THE MINKOWSKI DUALITY 336 7.4.3 MINKOWSKI DUALITY FOR CMATTICES AND SEMILINEAR LATTICES 338 8. APPLICATION TO GLOBAL OPTIMIZATION: DUALITY 345 8.1 INTRODUCTION 345 8.2 GENERAL SOLVABILITY THEOREMS 347 8.2.1 OVERVIEW 347 IMAGE 6 CONTENTS IX 8.2.2 SOLVABILITY THEOREMS FOR SYSTEMS OF ABSTRACT CONVEX FUNCTIONS 348 8.2.3 FURTHER SOLVABILITY RESULTS 350 8.2.4 SUBLINEAR INEQUALITY SYSTEMS 354 8.2.5 CONVEX INEQUALITY SYSTEMS 355 8.2.6 POSITIVELY HOMOGENEOUS SYSTEMS 356 8.2.7 TWICE CONTINUOUSLY DIFFERENTIABLE SYSTEMS 359 8.2.8 QUASICONVEX INEQUALITY SYSTEMS 360 8.2.9 SYSTEMS INVOLVING FUNCTIONS EXPRESSIBLE AS THE INFIMA OF FAMILIES OF CONVEX FUNCTIONS 361 8.2.10 CONVEX MAXIMIZATION 362 8.3 MAXIMAL ELEMENTS OF SUPPORT SETS AND TOLAND-SINGER FORMULA 363 8.3.1 OVERVIEW 363 8.3.2 MAXIMAL ELEMENTS 364 8.3.3 EXISTENCE OF MAXIMAL ELEMENTS OF SUPPORT SETS 367 8.3.4 POSITIVELY HOMOGENEOUS ELEMENTARY FUNCTIONS 371 8.3.5 MAXIMAL ELEMENTS OF SUPPORT SETS WITH RESPECT TO CONIC SETS OF POSITIVELY HOMOGENEOUS FUNCTIONS 373 8.3.6 THE TOLAND-SINGER FORMULA AND MAXIMAL ELEMENTS OF SUPPORT SETS 375 8.3.7 EXCESS FUNCTIONS 378 8.4 OPTIMIZATION OF THE DIFFERENCE OF ABSTRACT CONVEX FUNCTIONS 380 8.4.1 OVERVIEW 380 8.4.2 MINIMIZATION OF THE DIFFERENCE OF COERCIVE CONVEX FUNCTIONS 382 8.4.3 MINIMIZATION OF THE DIFFERENCE OF COERCIVE CONVEX AND SUBLINEAR FUNCTIONS 386 8.4.4 DUAL OPTIMALITY CONDITIONS FOR THE DIFFERENCE OF ICAR FUNCTIONS 391 8.4.5 NECESSARY AND SUFFICIENT CONDITIONS FOR THE MINIMUM OF THE DIFFERENCE OF COERCIVE STRICTLY ICAR FUNCTIONS 393 8.4.6 MINIMIZATION OF THE QUOTIENT OF CONVEX FUNCTIONS 396 APPLICATION TO GLOBAL OPTIMIZATION: NUMERICAL METHODS 399 9.1 INTRODUCTION 399 9.2 CONCEPTUAL SCHEMES OF NUMERICAL METHODS 401 9.2.1 OVERVIEW 401 9.2.2 SPECIAL MINORATES OF ABSTRACT CONVEX FUNCTIONS 401 9.2.3 GENERALIZED CUTTING PLANE METHOD 404 9.2.4 BRANCH-AND-BOUND METHODS 410 9.2.5 TABU SEARCH 413 9.2.6 EXTERNAL CENTRES METHOD 415 9.2.7 LIPSCHITZ PROGRAMMING VIA ABSTRACT CONVEXITY 416 9.3 CUTTING ANGLE METHOD 418 9.3.1 OVERVIEW 418 IMAGE 7 X ABSTRACT CONVEXITY 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 9.3.8 9.3.9 CUTTING ANGLE METHOD FOR ICAR FUNCTIONS THE SUBPROBLEM NUMERICAL RESULTS - ICAR OBJECTIVE FUNCTIONS CUTTING ANGLE METHOD FOR INCREASING CO-RADIANT FUNCTIONS NUMERICAL RESULTS - ICR OBJECTIVE FUNCTIONS CUTTING ANGLE METHOD FOR LIPSCHITZ FUNCTIONS NUMERICAL RESULTS - LIPSCHITZ FUNCTIONS BRANCH-AND-BOUND METHOD FOR LIPSCHITZ FUNCTIONS 9.4 CUTTING ANGLE METHOD (CONTINUATION) 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 OVERVIEW CUTTING ANGLE METHOD FOR THE MINIMIZATION OF IPH FUNCTIONS OVER THE UNIT SIMPLEX THE SUBPROBLEM: LOCAL MINIMA THE SUBPROBLEM: GLOBAL MINIMA RESULTS OF NUMERICAL EXPERIMENTS AN EXACT METHOD FOR SOLVING THE SUBPROBLEM 9.5 MONOTONE OPTIMIZATION 9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 REFERENCES OVERVIEW PRELIMINARIES PROBLEMS OF MONOTONIC OPTIMIZATION BASIC PROPERTIES PROPOSED SOLUTION METHOD CONVERGENCE COMPUTATIONAL EXPERIENCE 419 421 424 427 429 432 436 438 439 439 440 442 447 450 454 460 460 461 463 464 466 468 469 471 INDEX 489
any_adam_object 1
author Rubinov, Aleksandr M.
author_facet Rubinov, Aleksandr M.
author_role aut
author_sort Rubinov, Aleksandr M.
author_variant a m r am amr
building Verbundindex
bvnumber BV013409142
callnumber-first Q - Science
callnumber-label QA402
callnumber-raw QA402.5
callnumber-search QA402.5
callnumber-sort QA 3402.5
callnumber-subject QA - Mathematics
classification_rvk SK 870
ctrlnum (OCoLC)43864387
(DE-599)BVBBV013409142
dewey-full 519.3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.3
dewey-search 519.3
dewey-sort 3519.3
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01712nam a2200445 cb4500</leader><controlfield tag="001">BV013409142</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070108 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">001030s2000 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">079236323X</subfield><subfield code="9">0-7923-6323-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)43864387</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013409142</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubinov, Aleksandr M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Abstract convexity and global optimization</subfield><subfield code="c">by Alexander Rubinov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 490 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">44</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convexe functies</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische programmering</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimaliseren</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Hülle</subfield><subfield code="0">(DE-588)4312637-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Optimierung</subfield><subfield code="0">(DE-588)4140067-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Hülle</subfield><subfield code="0">(DE-588)4312637-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nonconvex optimization and its applications</subfield><subfield code="v">44</subfield><subfield code="w">(DE-604)BV010085908</subfield><subfield code="9">44</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009150149&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009150149</subfield></datafield></record></collection>
id DE-604.BV013409142
illustrated Illustrated
indexdate 2024-12-23T15:27:10Z
institution BVB
isbn 079236323X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009150149
oclc_num 43864387
open_access_boolean
owner DE-703
DE-824
DE-706
DE-11
owner_facet DE-703
DE-824
DE-706
DE-11
physical XVIII, 490 S. graph. Darst.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher Kluwer
record_format marc
series Nonconvex optimization and its applications
series2 Nonconvex optimization and its applications
spellingShingle Rubinov, Aleksandr M.
Abstract convexity and global optimization
Nonconvex optimization and its applications
Convexe functies gtt
Mathematische programmering gtt
Optimaliseren gtt
Convex programming
Mathematical optimization
Globale Optimierung (DE-588)4140067-7 gnd
Konvexe Hülle (DE-588)4312637-6 gnd
subject_GND (DE-588)4140067-7
(DE-588)4312637-6
title Abstract convexity and global optimization
title_auth Abstract convexity and global optimization
title_exact_search Abstract convexity and global optimization
title_full Abstract convexity and global optimization by Alexander Rubinov
title_fullStr Abstract convexity and global optimization by Alexander Rubinov
title_full_unstemmed Abstract convexity and global optimization by Alexander Rubinov
title_short Abstract convexity and global optimization
title_sort abstract convexity and global optimization
topic Convexe functies gtt
Mathematische programmering gtt
Optimaliseren gtt
Convex programming
Mathematical optimization
Globale Optimierung (DE-588)4140067-7 gnd
Konvexe Hülle (DE-588)4312637-6 gnd
topic_facet Convexe functies
Mathematische programmering
Optimaliseren
Convex programming
Mathematical optimization
Globale Optimierung
Konvexe Hülle
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009150149&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV010085908
work_keys_str_mv AT rubinovaleksandrm abstractconvexityandglobaloptimization