Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Adam, Waldemar (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Weinheim [u.a.] Wiley-VCH 2000
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV013380610
003 DE-604
005 20111215
007 t
008 001002s2000 gw d||| |||| 00||| eng d
016 7 |a 959812237  |2 DE-101 
020 |a 3527271503  |9 3-527-27150-3 
035 |a (OCoLC)47868829 
035 |a (DE-599)BVBBV013380610 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-703  |a DE-739  |a DE-473  |a DE-355  |a DE-19  |a DE-20  |a DE-29T  |a DE-384  |a DE-12  |a DE-91G  |a DE-706  |a DE-526  |a DE-634  |a DE-188 
050 0 |a QD305.E7 
082 0 |a 547/.23  |2 21 
084 |a VK 7000  |0 (DE-625)147414:253  |2 rvk 
084 |a CHE 646f  |2 stub 
084 |a CHE 621f  |2 stub 
245 1 0 |a Peroxide chemistry  |b mechanistic and preparative aspects of oxygen transfer ; research report  |c Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam 
264 1 |a Weinheim [u.a.]  |b Wiley-VCH  |c 2000 
300 |a XXVII, 664 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 7 |a Oxydation  |2 ram 
650 7 |a Peroxydes  |2 ram 
650 4 |a Oxidation 
650 4 |a Peroxides 
650 0 7 |a Oxidation  |0 (DE-588)4137187-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Organische Peroxide  |0 (DE-588)4172773-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Peroxide  |0 (DE-588)4611379-4  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Peroxide  |0 (DE-588)4611379-4  |D s 
689 0 1 |a Oxidation  |0 (DE-588)4137187-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Organische Peroxide  |0 (DE-588)4172773-3  |D s 
689 1 1 |a Oxidation  |0 (DE-588)4137187-2  |D s 
689 1 |C b  |5 DE-604 
700 1 |a Adam, Waldemar  |4 edt 
710 2 |a Deutsche Forschungsgemeinschaft  |e Sonstige  |0 (DE-588)2007744-0  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127237&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-009127237 

Datensatz im Suchindex

DE-473_call_number 20/VK 7000 IC 11568
DE-473_location 0
DE-BY-TUM_call_number 0302/CHE 646f 2000 A 2216
DE-BY-TUM_katkey 1192082
DE-BY-TUM_local_keycode ug
DE-BY-TUM_media_number 040030047222
DE-BY-UBG_katkey 1769058
DE-BY-UBG_media_number 013904397974
_version_ 1816712077091274752
adam_text Preface xx A Historical Mementos 1 1 Landmarks in the Development of Organic Peroxide Chemistry 3 Manfred Schulz 1.1 Introduction 4 1.2 The Historical Beginning of Oxidation Chemistry 5 1.3 The First Investigations Regarding the Course of Autoxidation of Organic Compounds 5 1.4 The Beginning of Modern Peroxide Chemistry 9 1.5 The Expansion of Classical Peroxide Chemistry 11 1.5.1 Autoxidation of Alkenes 11 1.5.1.1 The Four Membered Ring Peroxide Structure versus the Hydroperoxide Structure 11 1.5.1.2 Photooxygenation Reactions with Singlet Oxygen Endoperoxides 14 1.5.1.3 Polymeric Peroxides 18 1.5.1.4 Ozonization and Ozonides 19 1.6 Current Peroxide Chemistry 23 1.6.1 1,2 Dioxetanes 23 1.6.2 1,2 Dioxetanones (a Peroxylactones) 25 1.6.3 Dioxiranes ( The Wonder Oxidants ) 25 1.7 Hydrogen Peroxide 28 1.8 Peroxides in Biology 30 1.9 Recent Applications of Peroxide Chemistry 31 1.10 References and Remarks 33 Contents B Oxidation with Organic Peroxides 39 1 Recent Advances in Homogeneous Catalyzed Epoxidations Using Hydrogen Peroxide or tert. Butyl Hydroperoxide ... 41 Thomas Kratz and Werner ZeiB 1.1 Introduction and Background 41 1.2 Epoxidations with H2O2 43 1.2.1 Group VI B Catalysts (Cr, Mo, W) 43 1.2.2 Group VII B Catalysts (Mn, Tc, Re) 48 1.3 Epoxidations with TBHP 52 1.4 References 57 2 Photoinduced Electron Transfer Reactions of Alkenes and Azide Anions in the Presence of Molecular Oxygen: Formation of 1,2 Azidohydroperoxides and Use as Oxygen Transfer Reagents 60 Axel G. Griesbeck, Jb rg Steinwascher and Thomas Hundertmark 2.1 Historical Background and Query 61 2.2 Results and Discussion 62 2.2.1 The First Electron Transfer 62 2.2.2 Addition of Azidyl Radicals to Alkenes: Chemoselectivity 65 2.2.3 Addition of Azidyl Radicals to Alkenes: Regioselectivity 66 2.2.4 Addition of Azidyl Radicals to Alkenes: Simple Diastereoselectivity 67 2.2.5 Addition of Azidyl Radicals to Alkenes: Induced Diastereoselectivity 69 2.2.6 Addition of Molecular Oxygen to Carbon Centered Radicals 70 2.2.7 Second Electron Transfer 71 2.2.8 The Competing Reduction Step ROOH ROH 71 2.2.9 Variation of Substrates and Sensitizers 72 2.3 Azidohydroperoxides as Oxygen Transfer Reagents .... 73 2.4 Conclusions 75 2.5 References 76 Contents 3 Preparative Use of Peroxidic Oxidants for Oxygen Transfer Reactions Waldemar Adam, Hans Georg Degen, Aurelia Pastor, Chantu R. Saha Moller, Simon B. Schambony and Cong Gui Zhao 3.1 Background and Objectives 79 3.2 Oxygen Transfer Reactions with Singlet Oxygen 80 3.2.1 Regio and Diastereoselective Schenck Ene Reactions ... 80 3.2.1.1 Regioselectivity 81 3.2.1.2 Diastereoselectivity 82 3.2.2 Diastereoselective [4+2] and [2+2] Cycloadditions of Singlet Oxygen 87 3.2.2.1 [4+2] Cycloaddition 87 3.2.2.2 [2+2] Cycloaddition 91 3.3 Oxygen Transfer Reactions with Dioxiranes 92 3.3.1 Oxidation of n Bonds 92 3.3.1.1 Epoxidations 92 3.3.1.2 Arene Oxidation 97 3.3.1.3 Nitronate Anion Oxidation 99 3.3.2 Oxidation of S and N Heteroatoms 99 3.3.3 Oxidation of a Bonds 102 3.3.3.1 C H Oxidation 103 3.3.3.2 Si H Oxidation 103 3.3.4 Asymmetric Oxidations with Dioxiranes 103 3.4 Oxygen Transfer Reactions with Perhydrates 108 3.5 References 110 4 Organosulfonic and Sulfonimidic Peracids New Oxidants for Diastereoselective and Enantioselective Oxidations of Organic Substrates 113 Manfred Schulz and Ralph Kluge 4.1 Introduction 113 4.2 Results and Discussion 114 4.2.1 Organosulfonic Peracids 114 4.2.2 Sulfonimidic Peracids 119 4.3 Summary 125 4.4 References 126 5 Reactive Peroxo Compounds Generated in Situ from Hydrogen Peroxide: Kinetics and Catalytic Application in Oxidation Processes 128 Horst Elias and Stephane Vayssie 5.1 Background and Intention of the Project 129 5.2 Selection of the Systems Studied 130 Contents 5.3 Kinetics of the Acid Catalyzed Reaction of Cyclohexene with Hydogen Peroxide: Mechanistic Aspects of the in situ Activation of H2O2 [6] 131 5.4 Fast Oxidation of Organic Sulfides by Hydrogen Peroxide by in situ Generated Peroxynitrous Acid [7] 132 5.5 Fast Oxygen Atom Transfer from in situ Generated Peroxynitrous Acid to Thiolato Sulfur Coordinated to Cobalt(III) [8] 135 5.6 Concluding Remarks 136 5.7 References 138 6 Carbonyl O Oxides and Dioxiranes From Laboratory Curiosities to Useful Reagents 139 K. Block, W. Kappert, A. Kirschfeld, S. Muthusamy, K. Schroeder, W. Sander, E. Kraka, C. Sosa and D. Cremer 6.1 Introduction 139 6.2 Dimesitylketone O oxide 142 6.2.1 Synthesis 142 6.2.2 Spectroscopic Characterization 143 6.2.3 Thermal Decay 145 6.3 Dimesityldioxirane 147 6.3.1 Synthesis and Structural Characterization 147 6.3.2 Reactivity 148 6.4 Other Stable Carbonyl Oxides and Dioxiranes 151 6.5 Conclusion 153 6.6 References 154 7 Formation of Dioxiranes and Singlet Molecular Oxygen by the Ketone Catalyzed Decomposition of Peroxycarboxylic Acids 157 Andreas Lange and Hans Dieter Brauer 7.1 Introduction 158 7.2 Experimental 159 7.2.1 Materials . . . . 159 7.2.2 Singlet oxygen infrared emission measurements 160 7.2.3 Mechanism, Rate Law and Expression for IP of the Ketone catalyzed Decomposition 161 7.3 Results and Discussion 163 7.3.1 *O2 Phosphorescence Intensity IP as a Function of Time . . 163 7.3.2 lO2 Phosphorescence Intensity IP as a Function of [PCA]T(0), [Ketone]T and the pH dependent Factor F 164 7.3.3 Yield of ^2 Formation (Y1O2) 166 7.3.4 Third order Rate Constants for the Formation of Dioxiranes . 168 , 7.3.4.1 Ketone catalyzed Decomposition of MPP 168 i Contents 7.3.4.2 Ketone catalyzed Decomposition of MPM, MCPBA and PAA 169 7.3.5 1O2 Phosphorescence Emission of the Ketone catalyzed Decomposition of Monoperoxyphthalic Acid (MPP) at Different Temperatures 173 7.4 Conclusions 175 7.5 References 175 C Enzymatic and Biomimetic Oxidations 177 1 Age and Age Dependent Diseases, a Consequence of Lipid Peroxidation 179 Gerhard Spiteller, Dieter Spiteller, Wolfgang Jira, Uwe KieBling, Angela Dudda, Michael Weisser, Stefan Hecht and Caroline Schwarz 1.1 Introduction 180 1.2 Proof for the Implication of Linoleic Acid in LPO Processes Occurring in Mammalians 186 1.3 Implication of LPO Processes in Atherosclerosis and Aging . 189 1.4 Connections between Aging and Atherosclerosis 193 1.4.1 Physiological Properties of HODEs 193 1.4.2 Metabolism of HODEs 194 1.4.3 Induction of Nonenzymatic LPO Processes 196 1.4.4 Trapping of Intermediates of LPO Processes 197 1.4.5 Connection of LPO Processes with Food Intake 199 1.5 Peroxyl Radicals as Biological Epoxidation Reagent .... 200 1.5.1 Lipid Peroxidation in Cancer 204 1.6 Conclusions 205 1.7 References 206 2 New Peroxycarboxylic Acids by Lipase Catalysis: Preparation and Oxidation Properties 209 Siegfried Warwel and Mark Riisch gen. Klaas 2.1 Introduction 210 2.2 Generation of Peroxy Acids by Lipase Catalyzed Conversion of Carboxylic Acids with Hydrogen Peroxide 211 2.3 Generation of Peroxy Acids by Lipase Catalyzed Conversion of Carboxylic Esters with Hydrogen Peroxide (Perhydrolysis) 212 2.3.1 Scope of the Reaction 212 2.3.2 Generation of Optically Active Peroxy Acids by Lipase Catalyzed Perhydrolysis 213 2.3.3 Other Unusual Peroxy Acids 217 Contents 2.3.4 Generation of Peroxyacetic Acid by Lipase Catalyzed Perhydrolysis of Ethyl Acetate A General Procedure for Olefin Epoxidation [14] 218 2.3.5 Generation of Peroxycarbonic Acid Derivatives by Perhydrolysis of Dialkyl Carbonates An Acid Free Oxidant [17, 18] 219 2.4 Chemo Enzymatic Epoxidation of Unsaturated Fatty Acids and Esters [25] 221 2.5 Chemo Enzymatic Epoxidation of Unsaturated Fatty Alcohols 223 2.6 Chemo Enzymatic Epoxidation of Unsaturated Trimethylsilyl Ethers [30] 224 2.7 Chemo Enzymatic Oxidation of Aldehydes 227 2.8 Chemo Enzymatic Baeyer Villiger Oxidation 228 2.9 References 230 3 Transition Metal Catalyzed Oxyfunctionalization of Catechol and Flavonol Derivatives 232 Florian Schweppe, Holger Sirges, Matthias Pascaly, Mark Duda, Cetin Nazikkol, Werner Steinforth, Bernt Krebs 3.1 Oxygenases 233 3.2 Catechol 1,2 Dioxygenase 233 3.2.1 Introduction 233 3.2.2 Iron(III) Complexes as Structural and Functional Models for Catechol 1,2 Dioxygenases 234 3.2.2.1 Mononuclear Iron(III) Precursor Complexes 234 3.2.2.2 Mononuclear Iron(III) Tetrachlorocatecholate Complexes as Biomimetic Models for Enzyme Substrate Adducts . . . 236 3.2.2.3 Reactivity Studies of Iron(III) Catecholate Complexes ... 237 3.3 Quercetin 2,3 Dioxygenase 240 3.3.1 Introduction 240 3.3.2 Results 242 3.3.2.1 Kinetic Studies 242 3.3.2.2 Copper Complexes as Structural Models for the Active Site of Quercetinase 244 3.3.2.3 Spectroscopic Studies 246 3.4 References 248 4 Binding and Activation of Dioxygen by Biomimetic Metal Complexes 249 Ernst G. Jager, Jutta Knaudt, Kerstin Schuhmann and Anka Guba 4.1 Introduction 250 4.2 Complexes of New Chiral Iigands 251 4.3 Binding of Dioxygen by Metal(II) Complexes 252 Contents 4.3.1 Gas Volumetric Investigation of Dioxygen Uptake 252 4.3.2 Redox Potentials, Lewis Acidity, and Spin Ground State . . 256 4.3.3 Cobalt Complexes: Coupled Equilibria of Oxygenation. . . 261 4.3.4 Complexes of Iron and Manganese: Irreversible Oxygenation 265 4.4 Catalytic Activation of Dioxygen 266 4.4.1 General Remarks: Oxidation of Hydroquinone 266 4.4.2 The Role of Special Structural Features: Active and Inactive FeTAA Complexes 269 4.5 New [N3,O] , and [N3,O2] Coordinated Cobalt(II) Complexes 274 4.5.1 Syntheses and Structures 274 4.5.2 Reaction with Dioxygen 276 4.6 References 278 5 Transition Metal Catalyzed Stereoselective Synthesis of Functionalized Tetrahydrofurans 281 Simone Drees, Marco Greb, Jens Hartung and Philipp Schmidt 5.1 Introduction 282 5.2 Bromination Reactions Using Ammonium Metavanadate as Haloperoxidase Mimic 283 5.3 Vanadium Chelates as Oxidation Catalysts for the Stereo selective Synthesis of Functionalized Tetrahydrofurans 288 5.4 Models for Prediction of the Stereochemical Pathway for Vanadium(V) Catalyzed Formation of Functionalized Tetrahydrofurans from Alkenols 295 5.5 The Use of Complexes with Compartimental Ligands as Catalyst in the Stereoselective Synthesis of Tetrahydrofurans 296 5.6 References 299 D Metal Catalyzed Selective Oxidations 301 1 Metallosalen Catalyzed Asymmetric Oxygen Transfer Reaction: Dynamics of Salen Ligand Conformation .... 303 Tsutomu Katsuki 1.1 Introduction 304 1.2 Previous Studies on Mn salen Catalyzed Oxidation .... 305 1.3 Control of the Ligand Conformation of Oxo Mn Salen Complexes 311 1.4 Conformation of Second Generation Mn salen Complex . . 313 1.5 Conclusions 317 1.6 References 318 Con ten ts 2 Transition Metal Catalyzed Epoxidation of Unfunctionalized Alkenes 320 Andreas Scheurer, Paul Mosset, Martina Spiegel and Rolf W. Saalfrank 2.1 Aerobic Epoxidation of Olefins with Mononuclear Iron Cluster [FeU] as Catalyst 320 2.2 Epoxidation of Olefins with Molecular Oxygen or Hydrogen Peroxide and Trinuclear Iron Cluster [Fe3OL3] as Catalyst. . 322 2.3 Tetranuclear [NH4Fe4L|] and Hexanuclear [Fe6l4] Iron Clusters: Catalysts for the Epoxidation of Olefins with Molecular Oxygen or Hydrogen Peroxide 326 2.4 Enantioselective Epoxidation of Unfunctionalized Alkenes with Salen Mn(III) Complexes Based on Tartaric Acid . . . 329 2.4.1 Synthesis of (2R,3R) and (2S,3S) 2,3 diaminobutane 1,4 diol ethers 329 2.4.2 Synthesis of Salen (S,S) [MnL5]Cl Complexes 331 2.4.3 Enantioselective Epoxidation of Unfunctionalized Olefins with Terminal Oxidants Catalyzed by a Salen Mn(III) Complex 331 2.5 Catalytic Epoxidation of Olefins with Sodium Periodate in the Presence of C2 Symmetric Co(II) Bioxazoline Complexes 336 2.5.1 Synthesis of C2 Symmetric Bioxazolines Based on Tartaric Acid 336 2.5.2 Epoxidation of Olefins with 02/lsobutyraldehyde Catalyzed by Co(II) Complexes 336 2.6 References 338 3 Peroxo Complexes of Molybdenum, Tungsten and Rhenium with Phase Transfer Active Ligands: Catalysts for the Oxidation of Olefins and Aromatics by Hydrogen Peroxide and Bistrimethylsilyl Peroxide 341 Carsten Jost, Giinter Wahl, Dirk Kleinhenz and Jb rg Sundermeyer 3.1 Introduction 341 3.2 Results and Discussion 342 3.2.1 Activation of Hydrogen Peroxide 342 3.2.1.1 State of the Art 342 3.2.1.2 Surfactants as Ligands in a Biphasic Oxidation Catalysis . . 343 3.2.1.3 Catalytic Studies 343 3.2.1.4 Preparation of Catalysts and Their Model Complexes . . . 347 3.2.1.5 Mechanistic Studies on the Nature of the Active Species . . 349 3.2.1.6 The Best Ligands for Hydrogen Peroxide Activation . . . . 353 3.2.1.7 The Best Metal Complexes for Hydrogen Peroxide Activation 353 ; Contents 3.2.1.8 Conclusions for Hydrogen Peroxide Activation 356 3.2.2 Activation of Bistrimethylsilyl Peroxide (BTSP) 356 3.2.2.1 State of the Art 356 3.2.2.2 Catalytic Epoxidations via Activation of BTSP by Phosphane Oxide Complexes of Molybdenum, Tungsten and Rhenium . 357 3.2.2.3 Catalytic Oxidation of Aromatics via Activation of BTSP by Phosphane Oxide Complexes of Molybdenum, Tungsten and Rhenium 359 3.2.2.4 Mechanistic Aspects in the Activation of BTSP 360 3.2.2.5 Conclusions for Bistrimethylsilyl Peroxide Activation .... 361 3.3 References 361 4 Kinetic Resolution by Jacobsen Epoxidation as an Easy Route to Podophyllotoxin Analoga 365 Torsten Linker, Ulrike Engelhardt and Arunkanti Sarkar 4.1 Introduction 366 4.2 Synthesis of the Starting Materials 367 4.3 Epoxidations 368 4.3.1 Diastereoselective Epoxidations 369 4.3.2 Enantioselective Epoxidations 370 4.3.3 Influence of Allylic Substituents on the Epoxidations.... 375 4.4 Conclusions 378 4.5 References 379 5 Preparation of Optically Active Hydroperoxides and their Use for Stereoselective Oxygen Transfer 381 Hans Jurgen Hamann, Eugen Hoft and Jiirgen Liebscher 5.1 Introduction 381 5.2 Generation of Optically Active Hydroperoxides 382 5.2.1 Kinetic Resolutions 382 5.2.1.1 Kinetic Resolution via Sharpless Epoxidation 382 5.2.1.2 Kinetic Resolution by Decomposition of Hydroperoxides . . 385 5.2.1.3 Enzymatic Resolutions of Hydroperoxides 386 5.2.2 HPLC on Chiral Stationary Phases 392 5.2.3 Optically Active Hydroperoxides from the Chiral Pool . . 394 5.2.3.1 Pinane Hydroperoxides 394 5.2.3.2 Azido hydroperoxides 394 5.2.3.3 Hydroperoxides Derived from Sugars 395 5.3 Use of Optically Active Hydroperoxides for Stereoselective Oxygen Transfer 398 5.3.1 Epoxidation 398 5.3.2 Oxidation of Sulfides 402 5.4 References 404 Contents 6 New Early Transition Metal Complexes as Homogeneous Catalysts for Olefin Oxidation 406 Wolfgang A. Herrmann, Jorg Fridgen and Joachim J. Haider 6.1 Rhenium Compounds 407 6.1.1 Rhenium(V) Complexes with Schiff Base Ligands 407 6.1.1.1 Introduction 407 6.1.1.2 Results and Discussion 408 6.1.1.3 Conclusion 413 6.1.2 Intramolecular Lewis Base Adducts of Rhenium(VII) Oxides. 413 6.1.2.1 Introduction 413 6.1.2.2 Results and Discussion 414 6.1.2.3 Conclusion 417 6.2 Molybdenum and Tungsten Compounds 418 6.2.1 High Valent Molybdenum(VI) and Tungsten(VI) Complexes with N Heterocyclic Carbene Ligands 418 6.2.1.1 Introduction 418 6.2.1.2 Results and Discussion 418 6.2.1.3 Conclusion 420 6.2.2 Molybdenum(VI) and Tungsten(VI) Complexes with Pyridinyl Alcoholate Ligands 420 6.2.2.1 Introduction 420 6.2.2.2 Results and Discussion 420 6.2.2.3 Conclusion 428 6.3 References 428 7 Olefin Epoxidation Catalyzed by Molybdenum Peroxo Complexes: A Mechanistic Study 433 Werner R. Thiel, Michael Barz, Holger Glas and Anna Katharina Pleier 7.1 Introduction 434 7.2 Oxygen Transfer Mechanisms 434 7.3 Seven Coordinate Molybdenum Peroxo Complexes: Synthesis and Catalytic Features 435 7.4 Catalyst and Substrate in One Molecule, a First Idea on the Mechanism 437 7.5 Proton Transfer and Nucleophilic Attack: A Concerted Reaction 439 7.5.1 The Reaction of Lewis and Bransted Acids with Peroxo Complexes 439 7.5.2 Hydrogen Bonding to Peroxo Ligands Coordinated Mo(VI) . 441 7.6 A Structure/Activity Relationship for Epoxidation Catalysts . 443 7.7 From Ligand Fluxionality to the Activation of the Hydroperoxide 445 ; I I Contents 7.7.1 A NMR and DFT Investigation on the Ligand Dissociation Processes 446 7.7.2 A DFT study on the Hydroperoxide Activation 450 7.8 Conclusion 451 7.9 References 452 8 Oxidation Reactions in Perfluorinated Solvents 454 Bodo Betzemeier and Paul Knochel 8.1 Introduction 454 8.2 Direct Oxidation with Molecular Oxygen in Perfluorinated Solvents 456 8.2.1 Oxidation of Zinc Organometallics to Hydroperoxides . . . 456 8.2.2 Oxidation of Organoboranes to Alcohols 457 8.3 Metal Catalyzed Oxidation in a Fluorous Biphase System. . 458 8.3.1 Fluorinated f3 Diketonates 458 8.3.1.1 Nickel Catalyzed Oxidation of Aldehydes to Carboxylic Acids 459 8.3.1.2 Nickel Catalyzed Oxidation of Sulfides to Sulfoxides and Sulfones 460 8.3.1.3 Ruthenium Catalyzed Epoxidation of Olefins 461 8.3.1.4 Palladium Catalyzed Oxidation of Terminal Olefins to Methyl Ketones 461 8.3.2 Fluorinated Selenides 462 8.3.2.1 Epoxidation of Olefins 463 8.3.2.2 Oxidation of Alcohols to Aldehydes and Ketones 465 8.3.2.3 Baeyer Villiger Oxidation 465 8.4 Conclusion 466 8.5 References 467 9 Transition Metal Alkoxide Catalyzed Oxidation of Phenols, Alcohols, and Amines with terr. Butyl hydroperoxide. . . . 469 Horst Adam, Karameli Khanbabaee, Karsten Krohn, Jochen Kiipke, Hagen Rieger, Klaus Steingrover and Ingeborg Vinke 9.1 Introduction 469 9.2 Phenols to orfcho Quinones 471 9.3 Ortho Substituted Phenols to a Ketols 475 9.4 a Chloroketones from Silyl Enol Ethers and Selective para Chlorination of Phenols 479 9.5 Deydrogenation of Alcohols 480 9.5.1 Benzylic Alcohols 480 9.5.2 Dehydrogenation of Non Activated Alcohols 483 9.6 Oxidation of Amines 486 9.6.1 Primary Aromatic Amines 486 9.6.2 Aliphatic Primary Amines 487 9.6.3 N Dealkylation of Secondary N Aryl N Alkyl Amines . . . 488 Contents 9.7 Cleavage of Nitronates, Oximes and Hydrazones 489 9.8 References 490 10 Enantioselective Baeyer Villiger Reactions and Sulfide Oxidations 494 Carsten Bolm 10.1 Introduction 494 10.2 Metal catalyzed Asymmetric Baeyer Villiger Reactions . . . 495 10.3 Enantioselective Sulfide Oxidations 501 10.4 References 505 11 Chiral Pentacoordinated Manganese Complexes as Biomimetic Catalysts for Asymmetric Epoxidations with Hydrogen Peroxide 511 Albrecht Berkessel, Thomas Schwenkreis, Matthias Frauen kron, Adrian Steinmetz, Norbert Schatz and Jochen Prox 11.1 Introduction 511 11.2 Results 513 11.2.1 Synthesis and Catalytic Performance of Pentacoordinated Peroxidase Models 513 11.2.1.1 Synthesis of the Ligands and Manganese Complexes . . . 513 11.2.1.2 X Ray Crystal Structures 515 11.2.1.3 Asymmetric Epoxidation with Hydrogen Peroxide Catalyzed by the EnantiomericaUy Pure Manganese Chelates 7a,c,h,i . 516 11.2.1.4 Asymmetric Epoxidation Catalyzed by the Manganese Chelate 7 a Using Terminal Oxidants Other than Hydrogen Peroxide 519 11.2.1.5 Further Variations on the Catalyst Structure: Epoxidation of 1,2 Dihydronaphthalene 8 Catalyzed by the Manganese Chelates rac 7b e and rac 7g 519 11.2.2 Manganese Chelates Derived from Amino Acids 521 11.3 Discussion 522 11.3.1 Pentadentate Manganese (III) Complexes of the Dihydrosalen Type as Peroxidase Models and as New Epoxidation Catalysts 522 11.3.2 On the Mechanism of Asymmetric Induction 523 11.3.3 Stability of the Catalysts 523 11.4 Conclusion 524 Acknowledgements 524 11.5 References 525 i Contents 12 Photocatalytic Activation of Oxygen by Iron(III)porphyrins . 526 Horst Hennig and Doritt Luppa 12.1 Introduction 527 12.2 Influence of Porphyrin Substituents on the UV/VIS Spectro scopic and Photochemical Behavior of Iron(III) Complexes . 528 12.3 The Activation of O2 by Means of Photochemically Generated Iron(II)porphyrin Complexes 534 12.4 Photocatalytic Oxygenation of oc Pinene in the Presence of Chloro iron(III)porphyrin Complexes 536 12.5 Conclusions 539 12.6 References 540 13 Oxidation and Oxygenation of Substituted Arenes with Alkyl Hydroperoxides or Dioxygen/Mediation by Schiff Base Complexes 542 Anton Rieker, Stefan Forster and Emerich Eichhorn 13.1 Introduction 543 13.2 Mechanistic Aspects 544 13.2.1 Reactions with Dioxygen 544 13.2.1.1 No Electron Transfer (NOET) Between Substrate and Metal. 545 13.2.1.2 Outer Sphere Electron Transfer (OSET) 546 13.2.1.3 Inner Sphere Electron Transfer (ISET) 547 13.2.2 Indirect Oxygenation (INDO) with t BuOOH as Oxidant . . 547 13.3 Oxygenation of Phenols and Thiophenols 548 13.3.1 Regioselectivity in O2 Oxygenations 548 13.3.2 Oxygenation of Tyrosine Derivatives 550 13.3.3 Oxygenation of Thiophenols 551 13.3.4 Mechanistic Implications 552 13.4 Oxygenation of Anilines 553 13.4.1 Oxygenation of Anilines with Metal Complexes and t BuOOH (INDO) 553 13.4.2 Oxygenation of Anilines with O2 557 13.5 Oxygenation of Melatonin 558 13.5.1 Oxygenation with t BuOOH 559 13.5.1.1 Structure determination 560 13.5.2 Oxygenation with O2 560 13.5.2.1 Structure determination 560 13.5.3 Mechanistic Considerations 561 13.5.4 Conclusions 563 13.6 Summary 563 13.7 References 564 Contents E Spectroscopy Theory 567 1 The Nature of the Transition Structures for Oxygen Atom Transfer from Peroxy Acids, Dioxiranes and Chiral Bis(silyl) Peroxides 569 Robert D. Bach 1.1 Introduction 570 1.2 Methodology 575 1.3 Results and Discussion 576 1.3.1 Classification of the Electronic Structure and Reactivity of the O O Bond 576 1.3.1.1 The Epoxidation of Alkenes with Peroxy Acids and the Origin of the Activation Barrier 576 1.3.1.2 Oxygen Transfer from Dioxiranes (DMDO) to Saturated Alkanes 584 1.3.1.3 The Relative Stability of Dimethyl Dioxirane (DMDO) and 1,2 Dioxolane A Measure of the Strain Energy of DMDO 587 1.3.2 The Effect of 1,2 Silicon Bridging in the Enantioselective Epoxidation of Simple Alkenes 590 1.4 References 597 2 Mechanistic Aspects of Transition Metal Catalyzed Olefin Epoxidation from Density Functional Studies 601 Notker Rosch, Philip Gisdakis, Ilya V. Yudanov and Cristiana Di Valentin 2.1 Background and Open Questions 601 2.2 Re Complexes: Electronic Base Effect 603 2.2.1 Model Complexes 603 2.2.2 Mechanisms 605 2.2.3 Base Effect 606 2.3 Ti Complexes: Peroxo versus Hydroperoxy Structures . . . 610 2.3.1 Model Complexes 610 2.3.2 Epoxidation Transition States 612 2.3.3 Reaction Energies 613 2.3.4 Factors Governing Reaction Activity 613 2.4 Conclusions 616 2.5 References 617 Contents 3 Near UV Photolysis of Singlet Oxygen Generated by Energy Transfer from Aromatic Molecules in Rare Gas Matrices . . 620 Murthy S. Gudipati, Robert Wagner, Martin Kalb and Andreas Klein 3.1 Introduction 620 3.2 Experimental Details 623 3.3 Spectroscopy and Photochemistry of Isolated Species in Ar Matrices 624 3.3.1 O2 in Rare Gas Matrices 624 3.3.2 O atoms in rare gas matrices 625 3.3.3 PAH Molecules in Rare Gas Matrices 627 3.3.4 Anthracene 9,10 Endoperoxide and its Derivatives in Rare Gas Matrices 628 3.4 Photophysics of the PAH/O2 CCs in Ar Matrices 630 3.4.1 Laser Photolysis of APO and DMAPO in Ar Matrices. ... 630 3.4.2 Lifetimes of Singlet Oxygen in the CCs 631 3.5 Laser Photolysis of Singlet Oxygen in the PAH/O2 CCs in Ar Matrices 634 3.6 Conclusions and Future Perspectives 636 3.6.1 Implications to Laboratory Photochemistry 636 3.6.2 Implications to Atmospheric Chemistry 637 3.7 References 638 4 Transition Metal Ion Chemistry of Peroxides in the Gas Phase 640 Detlef Schroder, Christoph A. Schalley and Helmut Schwarz 4.1 Introduction 640 4.2 Peroxides for the Generation of Reactive Metal Oxo Species 641 4.2.1 Potential energy Surfaces of [Fe,H2,O2]+ and [Fe,H2rO2]2+ . . 643 4.3 Metal Ion Chemistry of Organic Peroxides 645 4.3.1 Reactions of Alkyl Hydroperoxides with Transition Metal Cations 645 4.3.2 Reactions of Dialkyl Peroxides with Transition Metal Cations 646 4.4 Metal Peroxides 649 4.4.1 [M]OOR+ Ions 649 4.4.2 The [M,O2] Manifold 651 4.4.3 Peroxo Units in Metal Clusters 653 4.5 O2 Activation and Peroxides 653 4.5.1 The Spin Problem 654 4.5.2 The Stoichiometry/Selectivity Problem 655 4.5.3 Possible Solutions 656 4.6 Performance of the Research Project 658 4.7 Spin off 659 4.8 References 660
any_adam_object 1
author2 Adam, Waldemar
author2_role edt
author2_variant w a wa
author_facet Adam, Waldemar
building Verbundindex
bvnumber BV013380610
callnumber-first Q - Science
callnumber-label QD305
callnumber-raw QD305.E7
callnumber-search QD305.E7
callnumber-sort QD 3305 E7
callnumber-subject QD - Chemistry
classification_rvk VK 7000
classification_tum CHE 646f
CHE 621f
ctrlnum (OCoLC)47868829
(DE-599)BVBBV013380610
dewey-full 547/.23
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 547 - Organic chemistry
dewey-raw 547/.23
dewey-search 547/.23
dewey-sort 3547 223
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Chemie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02060nam a2200529 c 4500</leader><controlfield tag="001">BV013380610</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111215 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">001002s2000 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959812237</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527271503</subfield><subfield code="9">3-527-27150-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47868829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013380610</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD305.E7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">547/.23</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 7000</subfield><subfield code="0">(DE-625)147414:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 646f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 621f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peroxide chemistry</subfield><subfield code="b">mechanistic and preparative aspects of oxygen transfer ; research report</subfield><subfield code="c">Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim [u.a.]</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 664 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oxydation</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Peroxydes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peroxides</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oxidation</subfield><subfield code="0">(DE-588)4137187-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organische Peroxide</subfield><subfield code="0">(DE-588)4172773-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Peroxide</subfield><subfield code="0">(DE-588)4611379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Peroxide</subfield><subfield code="0">(DE-588)4611379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Oxidation</subfield><subfield code="0">(DE-588)4137187-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Organische Peroxide</subfield><subfield code="0">(DE-588)4172773-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Oxidation</subfield><subfield code="0">(DE-588)4137187-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adam, Waldemar</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Deutsche Forschungsgemeinschaft</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)2007744-0</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009127237&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009127237</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV013380610
illustrated Illustrated
index_date 2024-09-19T15:08:40Z
indexdate 2024-11-25T17:19:56Z
institution BVB
institution_GND (DE-588)2007744-0
isbn 3527271503
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009127237
oclc_num 47868829
open_access_boolean
owner DE-703
DE-739
DE-473
DE-BY-UBG
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-20
DE-29T
DE-384
DE-12
DE-91G
DE-BY-TUM
DE-706
DE-526
DE-634
DE-188
owner_facet DE-703
DE-739
DE-473
DE-BY-UBG
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-20
DE-29T
DE-384
DE-12
DE-91G
DE-BY-TUM
DE-706
DE-526
DE-634
DE-188
physical XXVII, 664 S. graph. Darst.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher Wiley-VCH
record_format marc
spellingShingle Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report
Oxydation ram
Peroxydes ram
Oxidation
Peroxides
Oxidation (DE-588)4137187-2 gnd
Organische Peroxide (DE-588)4172773-3 gnd
Peroxide (DE-588)4611379-4 gnd
subject_GND (DE-588)4137187-2
(DE-588)4172773-3
(DE-588)4611379-4
(DE-588)4143413-4
title Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report
title_auth Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report
title_exact_search Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report
title_full Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam
title_fullStr Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam
title_full_unstemmed Peroxide chemistry mechanistic and preparative aspects of oxygen transfer ; research report Deutsche Forschungsgemeinschaft. Ed. by Waldemar Adam
title_short Peroxide chemistry
title_sort peroxide chemistry mechanistic and preparative aspects of oxygen transfer research report
title_sub mechanistic and preparative aspects of oxygen transfer ; research report
topic Oxydation ram
Peroxydes ram
Oxidation
Peroxides
Oxidation (DE-588)4137187-2 gnd
Organische Peroxide (DE-588)4172773-3 gnd
Peroxide (DE-588)4611379-4 gnd
topic_facet Oxydation
Peroxydes
Oxidation
Peroxides
Organische Peroxide
Peroxide
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127237&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT adamwaldemar peroxidechemistrymechanisticandpreparativeaspectsofoxygentransferresearchreport
AT deutscheforschungsgemeinschaft peroxidechemistrymechanisticandpreparativeaspectsofoxygentransferresearchreport