Geometrical physics in Minkowski spacetime

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rowe, E. G. Peter 1938-1998 (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London [u.a.] Springer 2001
Schriftenreihe:Springer monographs in mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV013380499
003 DE-604
005 20130318
007 t|
008 001002s2001 gw d||| |||| 00||| eng d
016 7 |a 959472541  |2 DE-101 
020 |a 1852333669  |9 1-85233-366-9 
035 |a (OCoLC)247888694 
035 |a (DE-599)BVBBV013380499 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-898  |a DE-355  |a DE-703  |a DE-91G  |a DE-11  |a DE-83 
050 0 |a QC173.65 
082 0 |a 530.11  |2 21 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a UH 8200  |0 (DE-625)145780:  |2 rvk 
084 |a 83A05  |2 msc 
084 |a 51B20  |2 msc 
084 |a PHY 041f  |2 stub 
100 1 |a Rowe, E. G. Peter  |d 1938-1998  |e Verfasser  |0 (DE-588)122663616  |4 aut 
245 1 0 |a Geometrical physics in Minkowski spacetime  |c E. G. Peter Rowe 
264 1 |a London [u.a.]  |b Springer  |c 2001 
300 |a XV, 248 S.  |b graph. Darst. : 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Springer monographs in mathematics 
650 4 |a Special relativity (Physics) 
650 0 7 |a Minkowski-Raum  |0 (DE-588)4293944-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Spezielle Relativitätstheorie  |0 (DE-588)4182215-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Spezielle Relativitätstheorie  |0 (DE-588)4182215-8  |D s 
689 0 1 |a Minkowski-Raum  |0 (DE-588)4293944-6  |D s 
689 0 |5 DE-604 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127153&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009127153 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 PHY 041f 2005 A 8099
DE-BY-TUM_katkey 1493205
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020746830
DE-BY-UBR_call_number 80/SK 950 R879
DE-BY-UBR_katkey 3145844
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069030186336
_version_ 1822698893601669120
adam_text E.G. PETER ROWE GEOMETRICAL PHYSICS IN MINKOWSKI SPACETIME WITH 112 FIGURES SPRINGER CONTENTS 1. SPACETIME 1 1.1 SPACETIME IS A FOUR-DIMENSIONAL CONTINUUM 3 1.2 ARISTOTELIAN SPACETIME (PRE-RELATIVISTIC) 4 1.3 GALILEAN SPACETIME 5 1.4 PRINCIPLES OF SPECIAL RELATIVITY 7 1.5 MINKOWSKIAN INERTIAL FRAMES OF REFERENCE 8 1.6 POINCARE TRANSFORMATIONS 12 1.6.1 STRAIGHT LINES 14 1.6.2 LIGHT RAYS 16 1.6.3 UNITS 20 1.6.4 ORIENTATIONS AND DEFINITION OF LORENTZ TRANSFORMATIONS 22 1.6.5 INVERSE LORENTZ TRANSFORMATIONS 22 1.7 INERTIAL COORDINATES IN SPACETIME 24 1.7.1 ABSOLUTE VS RELATIVE DIAGRAMS 24 1.7.2 THE USE OF INERTIAL COORDINATES 26 1.7.3 RELATION OF COORDINATES FOR BOOSTED FRAMES 26 1.8 GEOMETRICAL RELATIONS BETWEEN EVENTS 28 1.8.1 SPACETIME INTERVAL 28 1.8.2 INVARIANT RELATIONS 29 1.9 POINCARE GROUP 31 1.9.1 SUBGROUP OF TRANSLATIONS 31 1.9.2 ROTATION SUBGROUP 32 1.9.3 BOOSTS DO NOT FORM A SUBGROUP 33 1.10 PHYSICAL SPACETIME DIAGRAMS 34 1.11 PROBLEMS 36 REFERENCES 41 2. VECTORS IN SPACETIME 43 2.1 TRANSLATION VECTORS IN SPACETIME 44 2.1.1 VECTOR SPACE 45 2.1.2 ADDITION 46 2.1.3 MULTIPLICATION BY A SCALAR 47 2.1.4 INERTIAL BASIS VECTORS 48 2.1.5 DECOMPOSITION 49 XII CONTENTS 2.1.6 TRANSFORMATION OF BASIS VECTORS 49 2.2 SCALAR PRODUCT OF SPACETIME VECTORS 51 2.3 CLASSIFICATION OF VECTORS 53 2.3.1 FUTURE-POINTING LIGHTLIKE VECTORS 54 2.3.2 PAST-POINTING LIGHTLIKE VECTORS 54 2.3.3 FUTURE-POINTING TIMELIKE VECTORS 55 2.3.4 PAST-POINTING TIMELIKE VECTORS 55 2.3.5 SPACELIKE VECTORS 55 2.3.6 ZERO VECTOR 56 2.4 THE FAMOUS KINEMATICAL EFFECTS 56 2.4.1 TIME DILATION 57 2.4.2 THE TWIN PARADOX 59 2.4.3 LENGTH CONTRACTION 62 2.4.4 ADDITION OF VELOCITIES 63 2.4.5 TWO MOON ROCKETS 65 2.4.6 THE PROBLEM OF CRASHING MIRRORS 66 2.5 THE GENERALISED VECTOR SPACE V 67 2.6 PROPER TIME AND CONCEPTS OF VELOCITY 68 2.6.1 SPACETIME VELOCITY 69 2.6.2 PROPER TIME 71 2.6.3 RELATIVE VELOCITY WITH RESPECT TO AN INERTIAL FRAME... 72 2.6.4 GENERAL ADDITION OF VELOCITIES FORMULA 74 2.6.5 ACCELERATION 75 2.7 LIGHT RAYS 76 2.7.1 LIGHTLIKE VECTORS 76 2.7.2 HARMONIC LIGHT 81 2.7.3 SCALAR FIELD THEORY FOR LIGHT 83 2.8 DESCRIPTION OF UNIFORMLY MOVING OBJECTS 85 2.8.1 EXAMPLE: ROD LYING IN THE DIRECTION OF MOTION 87 2.8.2 EXAMPLE: ROD AT AN ANGLE TO THE DIRECTION OF MOTION. 88 2.8.3 EXAMPLE: PARALLELOGRAM AT REST IN K 88 2.8.4 EXAMPLE: PARALLELEPIPED AT REST IN K 89 2.8.5 EXAMPLE: A UNIFORMLY MOVING ROD CAN APPEAR TO DIP 89 2.9 PROBLEMS 90 REFERENCES 98 3. ASYMPTOTIC MOMENTUM CONSERVATION 99 3.1 PARTICLE MOMENTA 99 3.1.1 MASSIVE PARTICLES 100 3.1.2 MASSLESS PARTICLES 102 3.1.3 ENERGY AND THREE-MOMENTUM OF ONE PARTICLE WITH RESPECT TO THE REST FRAME OF ANOTHER PARTICLE 104 3.2 CONSERVATION OF ASYMPTOTIC MOMENTUM 104 3.3 THREE-PARTICLE PROCESSES 106 3.4 A KINEMATICAL FUNCTION 108 CONTENTS XIII 3.5 COMPTON EFFECT 109 3.6 CENTRE-OF-MOMENTUM FRAME 110 3.6.1 TWO-PARTICLE CM-FRAME 112 3.7 THRESHOLD ENERGY FOR PARTICLE PRODUCTION 113 3.8 SCATTERING FORMULAE 115 3.8.1 LABORATORY FRAME 116 3.8.2 CM-FRAME 116 3.9 PROBLEMS 119 REFERENCES 124 4. COVECTORS AND DYADICS IN SPACETIME 125 4.1 COVECTORS IN SPACETIME 126 4.1.1 COMPONENTS OF A COVECTOR 126 4.1.2 TRANSFORMATION LAW FOR COMPONENTS 126 4.1.3 THE DUAL SPACE (OR COSPACE) 127 4.1.4 COBASES AND THEIR TRANSFORMATION LAW 127 4.1.5 THE NATURAL ISOMORPHISM BETWEEN V AND V* 128 4.1.6 GEOMETRICAL INTERPRETATION 128 4.2 GRADIENT OF A SCALAR FIELD 130 4.2.1 APPROXIMATION OF SCALAR FIELDS AND THE COVECTOR GRA- DIENT 130 4.2.2 COMPONENTS OF THE COVECTOR GRADIENT 131 4.2.3 VECTOR GRADIENT 132 4.2.4 GRADIENT OPERATORS 133 4.2.5 COBASIS AS THE COVECTOR GRADIENT OF THE INERTIAL COORDINATES 133 4.3 DYADICS IN SPACETIME 133 4.3.1 LINEAR TRANSFORMATIONS AS DYADICS 134 4.3.2 SIMPLEST PROPERTIES 135 4.3.3 BASES FOR THE SPACE OF DYADICS 135 4.3.4 A UNIT DYADIC: THE CONTRAVARIANT METRIC 136 4.3.5 A GEOMETRICAL EXAMPLE: REFLECTION DYADICS 137 4.3.6 TRANSFORMATION LAW FOR COMPONENTS 137 4.3.7 TRANSPOSED DYADICS AND SYMMETRIES 138 4.3.8 SCALAR PRODUCTS 139 4.3.9 TRACE 139 4.4 ROTATION AND BOOST DYADICS 140 4.5 GRADIENT OF A VECTOR FIELD 141 4.6 EXTENSIONS 143 4.7 DUAL OF AN ANTISYMMETRIC DYADIC 144 4.7.1 THE DEFINITION IS BASIS-INDEPENDENT 145 4.7.2 EXPLICIT COMPONENTS OF THE DUAL 146 4.7.3 AN ANTISYMMETRIC BASIS 147 4.7.4 ANGULAR MOMENTUM DYADIC FOR A FREELY MOVING PARTICLE 148 XIV CONTENTS 4.8 CONCEPT OF VOLUME IN SPACETIME 149 4.8.1 DIMENSION TWO 149 4.8.2 UNORIENTED REGION 149 4.8.3 ORIENTED REGION 150 4.8.4 DIMENSIONS THREE AND FOUR 151 4.8.5 THE COMMON MEASURE IN MINKOWSKI SPACETIME 152 4.8.6 CHANGE OF VARIABLES FORMULA 153 4.9 DIVERGENCE THEOREM IN SPACETIME 154 4.9.1 INTEGRAL FORM OF THE CONSERVATION LAW 154 4.9.2 DIVERGENCE THEOREM IN SPACETIME: GEOMETRICAL EXPRESSION 156 4.9.3 DIVERGENCE THEOREM: ANALYTICAL EXPRESSION 157 4.10 PROBLEMS 158 REFERENCES 164 5. ELECTROMAGNETISM 165 5.1 MAXWELL S EQUATIONS 165 5.1.1 VERIFICATION OF MAXWELL S EQUATIONS 167 5.2 TRANSFORMATION OF ELECTRIC AND MAGNETIC FIELDS 168 5.3 EXAMPLE: AN INFINITE LINE OF CHARGE 169 5.3.1 FIELDS AND SOURCES WITH RESPECT TO THE REST FRAME K 170 5.3.2 FIELDS AND SOURCES WITH RESPECT TO K 171 5.4 VECTOR POTENTIAL 172 5.4.1 ALTERNATIVE FORM FOR THE HOMOGENEOUS MAXWELL EQUATION 173 5.4.2 AN EXPLICIT VECTOR POTENTIAL 173 5.4.3 LORENTZ CONDITION 174 5.5 ELECTRIC CURRENT DENSITY 174 5.5.1 CHARGED DUST 175 5.5.2 DENSITY OF CHARGE 176 5.5.3 FLUX OF CHARGE 177 5.5.4 CONSERVATION OF CHARGE 178 5.5.5 CONSERVATION OF CHARGE ALONG A WORLDLINE 180 5.6 POINT PARTICLE: A SINGULAR SOURCE 180 5.6.1 THE INTRINSIC VARIABLES 182 5.6.2 ELECTROMAGNETIC FIELD FOR A POINT CHARGE 185 5.6.3 ELECTRIC AND MAGNETIC FIELDS IN THE RETARDED REST FRAME 186 5.6.4 ELECTRIC AND MAGNETIC FIELDS IN THE LABORATORY 186 5.6.5 MAXWELL S EQUATIONS FOR A POINT CHARGE 187 5.6.6 THE REGION OFF THE WORLDLINE: EMPTY SPACE 188 5.6.7 THE ELECTROMAGNETIC FIELD AS A DISTRIBUTION 188 5.6.8 CHANGE OF VARIABLES IN SPACETIME INTEGRALS 189 5.6.9 MAXWELL S EQUATIONS ALONG THE WORLDLINE 190 5.7 PLANE WAVES 191 CONTENTS XV 5.7.1 PLANE POLARISED WAVES 192 5.7.2 CIRCULARLY POLARISED WAVES 193 5.7.3 CHANGE OF BASIS: A BOOST IN THE DIRECTION OF PROPAGATION 193 5.7.4 CHANGE TO A GENERAL MOVING FRAME 194 5.8 PROBLEMS 195 REFERENCES 200 6. THE ENERGY TENSOR 201 6.1 THE ENERGY TENSOR FOR DUST 202 6.2 THE ENERGY TENSOR IN GENERAL 203 6.2.1 CONSERVATION OF FOUR-MOMENTUM 204 6.3 THE VARIATIONAL PRINCIPLE 206 6.3.1 ACTION FOR THE ELECTROMAGNETIC FIELD 208 6.3.2 ACTION FOR A CHARGED PARTICLE IN AN EXTERNAL FIELD 209 6.3.3 ACTION FOR CHARGED PARTICLES INTERACTING ELECTROMAG- NETICALLY 210 6.4 NONINERTIAL COORDINATES 211 6.4.1 NEW BASIS VECTORS 211 6.4.2 NEW COMPONENTS 212 6.5 CONSTRUCTION OF THE ENERGY TENSOR 213 6.5.1 FIRST EXAMPLE: ENERGY TENSOR FOR THE FREE SCALAR FIELD 218 6.5.2 THE TOTAL ENERGY TENSOR HAS ZERO DIVERGENCE 219 6.5.3 SECOND EXAMPLE: ENERGY TENSOR FOR THE ELECTROMAG- NETIC FIELD 219 6.5.4 THIRD EXAMPLE: ENERGY TENSOR FOR A POINT PARTICLE ... 220 6.6 ENERGY IN THE ELECTROMAGNETIC FIELD 221 6.6.1 FOUR-MOMENTUM IN A PLANE WAVE 222 6.6.2 RADIATION FROM AN ACCELERATING POINT CHARGE 223 6.7 EQUATIONS OF MOTION FOR CHARGED DUST 224 6.7.1 UNCHARGED INCOHERENT DUST 224 6.7.2 CHARGED DUST 226 6.7.3 FRAME-DEPENDENT EQUATION OF MOTION FOR CHARGED DUST227 6.8 PERFECT FLUID 228 6.8.1 EQUATIONS OF MOTION 229 6.8.2 FIRST LAW OF THERMODYNAMICS 229 6.8.3 LABEL SPACE 230 6.8.4 LAGRANGIAN FOR A PERFECT FLUID 232 6.9 PROBLEMS 235 REFERENCES 239 INDEX 241
any_adam_object 1
author Rowe, E. G. Peter 1938-1998
author_GND (DE-588)122663616
author_facet Rowe, E. G. Peter 1938-1998
author_role aut
author_sort Rowe, E. G. Peter 1938-1998
author_variant e g p r egp egpr
building Verbundindex
bvnumber BV013380499
callnumber-first Q - Science
callnumber-label QC173
callnumber-raw QC173.65
callnumber-search QC173.65
callnumber-sort QC 3173.65
callnumber-subject QC - Physics
classification_rvk SK 950
UH 8200
classification_tum PHY 041f
ctrlnum (OCoLC)247888694
(DE-599)BVBBV013380499
dewey-full 530.11
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.11
dewey-search 530.11
dewey-sort 3530.11
dewey-tens 530 - Physics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01723nam a2200457 c 4500</leader><controlfield tag="001">BV013380499</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130318 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">001002s2001 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">959472541</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1852333669</subfield><subfield code="9">1-85233-366-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247888694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013380499</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8200</subfield><subfield code="0">(DE-625)145780:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51B20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 041f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rowe, E. G. Peter</subfield><subfield code="d">1938-1998</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122663616</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometrical physics in Minkowski spacetime</subfield><subfield code="c">E. G. Peter Rowe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 248 S.</subfield><subfield code="b">graph. Darst. : 24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer monographs in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special relativity (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minkowski-Raum</subfield><subfield code="0">(DE-588)4293944-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Minkowski-Raum</subfield><subfield code="0">(DE-588)4293944-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009127153&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009127153</subfield></datafield></record></collection>
id DE-604.BV013380499
illustrated Illustrated
indexdate 2024-12-23T15:26:38Z
institution BVB
isbn 1852333669
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009127153
oclc_num 247888694
open_access_boolean
owner DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
DE-703
DE-91G
DE-BY-TUM
DE-11
DE-83
owner_facet DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
DE-703
DE-91G
DE-BY-TUM
DE-11
DE-83
physical XV, 248 S. graph. Darst. : 24 cm
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher Springer
record_format marc
series2 Springer monographs in mathematics
spellingShingle Rowe, E. G. Peter 1938-1998
Geometrical physics in Minkowski spacetime
Special relativity (Physics)
Minkowski-Raum (DE-588)4293944-6 gnd
Spezielle Relativitätstheorie (DE-588)4182215-8 gnd
subject_GND (DE-588)4293944-6
(DE-588)4182215-8
title Geometrical physics in Minkowski spacetime
title_auth Geometrical physics in Minkowski spacetime
title_exact_search Geometrical physics in Minkowski spacetime
title_full Geometrical physics in Minkowski spacetime E. G. Peter Rowe
title_fullStr Geometrical physics in Minkowski spacetime E. G. Peter Rowe
title_full_unstemmed Geometrical physics in Minkowski spacetime E. G. Peter Rowe
title_short Geometrical physics in Minkowski spacetime
title_sort geometrical physics in minkowski spacetime
topic Special relativity (Physics)
Minkowski-Raum (DE-588)4293944-6 gnd
Spezielle Relativitätstheorie (DE-588)4182215-8 gnd
topic_facet Special relativity (Physics)
Minkowski-Raum
Spezielle Relativitätstheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009127153&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT roweegpeter geometricalphysicsinminkowskispacetime