Numerical methods for bifurcations of dynamical equilibria

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Govaerts, Willy J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Philadelphia, PA SIAM 2000
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV013365694
003 DE-604
005 20090710
007 t|
008 000929s2000 xx d||| |||| 00||| eng d
020 |a 0898714427  |9 0-89871-442-7 
035 |a (OCoLC)247652788 
035 |a (DE-599)BVBBV013365694 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-19  |a DE-91G  |a DE-703  |a DE-11  |a DE-188 
050 0 |a QA614.8 
082 0 |a 515.352 
084 |a SK 920  |0 (DE-625)143272:  |2 rvk 
084 |a MAT 587f  |2 stub 
100 1 |a Govaerts, Willy J.  |e Verfasser  |4 aut 
245 1 0 |a Numerical methods for bifurcations of dynamical equilibria  |c Willy J. F. Govaerts 
264 1 |a Philadelphia, PA  |b SIAM  |c 2000 
300 |a XXII, 362 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Differentialgleichung - Numerisches Verfahren 
650 4 |a Differenzierbares dynamisches System 
650 4 |a Verzweigung <Mathematik> 
650 4 |a Bifurcation theory 
650 4 |a Differentiable dynamical systems 
650 4 |a Differential equations  |x Numerical solutions 
650 0 7 |a Verzweigung  |g Mathematik  |0 (DE-588)4078889-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Verzweigung  |g Mathematik  |0 (DE-588)4078889-1  |D s 
689 0 1 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 0 2 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009116874&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009116874 

Datensatz im Suchindex

DE-19_call_number 1601/SK 920 G721
DE-19_location 95
DE-BY-TUM_call_number 0102 MAT 344f 2001 B 1635
DE-BY-TUM_katkey 1164678
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010570917
DE-BY-UBM_katkey 2170389
DE-BY-UBM_media_number 41602191160011
_version_ 1823051825461329920
adam_text Contents Preface xiii Notation xv Introduction xvii 1 Examples and Motivation 1 1.1 Nonlinear Equations and Dynamical Systems 1 1.2 Examples from Population Dynamics 3 1.2.1 Stable and Unstable Equilibria 3 1.2.2 A Set of Bifurcation Points 4 1.2.3 A Cusp Catastrophe 7 1.2.4 A Hopf Bifurcation 10 1.3 An Example from Combustion Theory 15 1.3.1 Finite Element Discretization 15 1.3.2 Finite Difference Discretization 19 1.3.3 Numerical Continuation: Motivation by an Example 20 1.4 An Example of Symmetry Breaking 21 1.5 Linear and Nonlinear Stability 24 1.6 Exercises 27 2 Manifolds and Numerical Continuation 29 2.1 Manifolds 29 2.1.1 Definitions 29 2.1.2 The Tangent Space 30 2.1.3 Examples 31 2.2 Branches and Limit Points 32 2.3 Numerical Continuation 34 2.3.1 Natural Parameterization 34 2.3.2 Pseudoarclength Continuation 36 2.3.3 Steplength Control 40 2.3.4 Convergence of Newton Iterates 42 2.3.5 Some Practical Considerations 44 2.4 Notes and Further Reading 44 vii viii Contents 2.5 Exercises 44 3 Bordered Matrices 49 3.1 Introduction: Motivation by Cramer s Rule 49 3.2 The Construction of Nonsingular Bordered Matrices 50 3.3 The Singular Value Inequality 52 3.4 The Schur Inverse as Denning System for Rank Deficiency 57 3.5 Invariant Subspaces of Parameter Dependent Matrices 59 3.6 Numerical Methods for Bordered Linear Systems 61 3.6.1 Backward Stability 61 3.6.2 Algorithm BEM for One Bordered Systems 63 3.6.3 Algorithm BEMW for Wider Bordered Systems 65 3.7 Notes and Further Reading 67 3.8 Exercises 67 4 Generic Equilibrium Bifurcations in One Parameter Problems 71 4.1 Limit Points 71 4.1.1 The Moore Spence System for Quadratic Turning Points 72 4.1.2 Quadratic Turning Points by Direct Bordering Methods 73 4.1.3 Detection of Quadratic Turning Points 74 4.1.4 Continuation of Limit Points 75 4.2 Example: A One Dimensional Continuous Brusselator 75 4.2.1 The Model and Its Discretization 75 4.2.2 Turning Points in the Brusselator Model 78 4.3 Classical Methods for the Computation of Hopf Points 79 4.3.1 Hopf Points 79 4.3.2 Regular Systems with 3N + 2 Equations 81 4.3.3 Regular Systems with 2N + 2 Equations 83 4.3.4 Regular Systems with N + 2 Equations 84 4.3.5 Zero Sum Pairs of Real Eigenvalues 85 4.3.6 Hopf Points by Complex Arithmetic 87 4.4 Tensor Products and Bialternate Products 88 4.4.1 Tensor Products 88 4.4.2 Condensed Tensor Products 89 4.4.3 The Natural Involution in C x C 92 4.4.4 The Bialternate Product of Matrices 92 4.4.5 The Jordan Structure of the Bialternate Product Matrix 95 4.5 Hopf Points with Bialternate Product Methods 101 4.5.1 Reconstruction of the Eigenstructure 103 4.5.2 Double Borders and Detection of Double Hopf Points 104 4.6 Computation of Hopf Points: Examples 105 4.6.1 Zero Sum Pairs of Eigenvalues in the Catalytic Oscillator Model . 105 4.6.2 The Clamped Hodgkin Huxley Equations 1°6 4.6.3 Discretization and Generalized Eigenvalue Problems 1°7 4.7 Notes and Further Reading 11° Contents be 4.8 Exercises Ill 5 Bifurcations Determined by the Jordan Form of the Jacobian 117 5.1 Bogdanov Takens Points and Their Generalizations 117 5.1.1 Introduction 117 5.1.2 Numerical Computation of BT Points 118 5.1.3 Local Analysis of BT Matrices 121 5.1.4 Transversality and Genericity 125 5.1.5 Test Functions for BT Points 127 5.1.6 Example: A Curve of BT Points in the Catalytic Oscillator Model 127 5.2 ZH Points and Their Generalizations 127 5.2.1 Transversality and Genericity for Simple Hopf 128 5.2.2 Transversality and Genericity for ZH 131 5.2.3 Detection of ZH Points 131 5.3 DH Points and Resonant DH Points 132 5.3.1 Introduction 132 5.3.2 Defining Functions for Multiple Hopf Points 132 5.3.3 Branch Switching at a DH Point 136 5.3.4 Resonant DH Points 137 5.3.5 The Stratified Set of Hopf Points Near a Point with One to One Resonance 142 5.4 Example: The Lateral Pyloric Neuron 146 5.5 Notes and Further Reading 150 5.6 Exercises 150 6 Singularity Theory 155 6.1 Contact Equivalence of Nonlinear Mappings 155 6.2 The Numerical Lyapunov Schmidt Reduction 156 6.3 Classification of Singularities by Codimension 163 6.3.1 Introduction and Basic Properties 163 6.3.2 Singularities from R into R 165 6.3.3 Singularities from R2 into R 165 6.3.4 Singularities from R2 into R2 172 6.3.5 A Table of ^ Singularities 173 6.3.6 Example: Intersection of a Surface with Its Tangent Plane 174 6.3.7 Example: A Point on a Rolling Wheel 175 6.4 Unfolding Theory 176 6.5 Example: The Continuous Flow Stirred Tank Reactor 185 6.5.1 Description of the Model 186 6.5.2 Numerical Computation of a Cusp Point 187 6.5.3 The Universal Unfolding of a Cusp Point 189 6.5.4 Example: Unfolding a Cusp in the CSTR 192 6.5.5 Pairs of Nondegeneracy Conditions: An Example 195 6.6 Numerical Methods for /C Singularities 195 6.6.1 The Codimension 1 Singularity from R into R 196 x Contents 6.6.2 Singularities from R into R with Codimension Higher than 1 ... 201 6.6.3 Singularities from R2 into R 204 6.6.4 Singularities from R2 into R2 206 6.7 Notes and Further Reading 209 6.8 Exercises 209 7 Singularity Theory with a Distinguished Bifurcation Parameter 213 7.1 Singularities with a Distinguished Bifurcation Parameter 214 7.2 Classification of (A /(^ Singularities from R into R 214 7.3 Classification of (A /^ Singularities from R2 into R2 216 7.4 Numerical Methods for (A — /C) Singularities 219 7.4.1 Numerical Methods for (A /(^ Singularities with Corank 1 .... 220 7.4.2 Numerical Methods for (A — /^ Singularities with Corank 2 .... 222 7.5 Interpretation of Simple Singularities with Corank 1 222 7.6 Examples in Low Dimensional Spaces 225 7.6.1 Winged Cusps in the CSTR 225 7.6.2 An Eutrophication Model 226 7.7 Example: The One Dimensional Brusselator 229 7.7.1 Computational Study of a Curve of Equilibria 229 7.7.2 Computational Study of a Curve of Turning Points 231 7.7.3 Computational Study of a Curve of Hysteresis Points 234 7.7.4 Computational Study of a Curve of Transcritical Bifurcation Points 236 7.7.5 A Winged Cusp on a Curve of Pitchfork Bifurcations 237 7.7.6 A Degenerate Pitchfork on a Curve of Pitchfork Bifurcations 239 7.7.7 Computation of Branches of Cusp Points and Quartic Turning Points 240 7.8 Numerical Branching 242 7.8.1 Simple Bifurcation Point and Isola Center 243 7.8.2 Cusp Points in /C Singularity Theory 243 7.8.3 Transcritical and Pitchfork Bifurcations in (A — /C) Singularity Theory 247 7.8.4 Branching Point on a Curve of Equilibria 248 7.9 Exercises 249 8 Symmetry Breaking Bifurcations 253 8.1 The Z2 Case: Corank 1 and Symmetry Breaking 254 8.1.1 Basic Results on Z2 Equivariance 254 8.1.2 Symmetry Breaking on a Branch of Equilibria: Generic Scenario 256 8.1.3 The Lyapunov Schmidt Reduction with Symmetry Adapted Bordering 257 8.1.4 The Classification of Z2 Equivariant Germs 258 8.1.5 Numerical Detection, Computation, and Continuation 260 Contents xi 8.1.6 Branching and Numerical Study of a Nonsymmetric Branch .... 262 8.2 The Z2 Case: Corank 2 and Mode Interaction 263 8.2.1 Numerical Example: A Corank 2 Point on a Curve of Turning Points 264 8.2.2 Continuation of Turning Points by Double Bordering 265 8.2.3 The Z2 Equivariant Reduction by a Symmetry Adapted Double Bordering 266 8.2.4 Computation of a Corank 2 Point 268 8.2.5 Analysis and Computation of the Singularity Properties of a Corank 2 Point 269 8.2.6 The Z2 Equivariant Classification of Corank 2 Points with Distinguished Bifurcation Parameter 272 8.3 Rank Drop on a Curve of Singular Points 275 8.3.1 Corank 1 Singularities in Two State Variables 275 8.3.2 The Case of a Symmetry Adapted Bordering 277 8.3.3 Numerical Example: A Corank 2 Point on a Curve of Cusps .... 278 8.4 Other Symmetry Groups 280 8.4.1 Symmetry Adapted Bases 280 8.4.2 The Equivariant Branching Lemma 283 8.4.3 Example: A System with D4 Symmetry 286 8.4.4 Numerical Implementation 290 8.5 Notes and Further Reading 292 8.6 Exercises 292 9 Bifurcations with Degeneracies in the Nonlinear Terms 295 9.1 Principles of Center Manifold Theory 296 9.1.1 The Homological Equation for Dynamics in the Center Manifold . 297 9.1.2 Normal Form Results 298 9.1.3 General Remarks on the Computation 301 9.2 Computation of CPs 301 9.2.1 The Manifold 302 9.2.2 A Minimally Extended Denning System 303 9.2.3 A Large Denning System 304 9.3 Computation of GH Points 306 9.3.1 The Manifold 306 9.3.2 A Minimally Extended Defining System 307 9.3.3 A Large Defining System 308 9.4 Examples 311 9.4.1 A Turning Point of Periodic Orbits in the Hodgkin Huxley Model 311 9.4.2 Bifurcations with High Codimension in the LP Neuron Model . . . 314 9.4.3 Dynamics of Corruption in Democratic Societies 315 9.5 Notes and Further Reading 320 9.6 Exercises 320 xii Contents 10 An Introduction to Large Dynamical Systems 323 10.1 A Class of One Dimensional PDEs 324 10.1.1 Space Discretization 325 10.1.2 Integration by Crank Nicolson 328 10.1.3 B stability and the Implicit Midpoint Rule 332 10.1.4 Numerical Continuation 332 10.1.5 Solution of Linear Systems 334 10.1.6 Example: The Nonadiabatic Tubular Reactor 335 10.2 Bifurcations: Reduction to a Low Dimensional State Space 336 10.3 Notes and Further Reading 339 10.4 Exercises 340 Bibliography 343 Index 359
any_adam_object 1
author Govaerts, Willy J.
author_facet Govaerts, Willy J.
author_role aut
author_sort Govaerts, Willy J.
author_variant w j g wj wjg
building Verbundindex
bvnumber BV013365694
callnumber-first Q - Science
callnumber-label QA614
callnumber-raw QA614.8
callnumber-search QA614.8
callnumber-sort QA 3614.8
callnumber-subject QA - Mathematics
classification_rvk SK 920
classification_tum MAT 587f
ctrlnum (OCoLC)247652788
(DE-599)BVBBV013365694
dewey-full 515.352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.352
dewey-search 515.352
dewey-sort 3515.352
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01855nam a2200469 c 4500</leader><controlfield tag="001">BV013365694</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090710 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000929s2000 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898714427</subfield><subfield code="9">0-89871-442-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247652788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013365694</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 587f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Govaerts, Willy J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical methods for bifurcations of dynamical equilibria</subfield><subfield code="c">Willy J. F. Govaerts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, PA</subfield><subfield code="b">SIAM</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 362 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentialgleichung - Numerisches Verfahren</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differenzierbares dynamisches System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Verzweigung &lt;Mathematik&gt;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009116874&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009116874</subfield></datafield></record></collection>
id DE-604.BV013365694
illustrated Illustrated
indexdate 2025-02-03T16:44:36Z
institution BVB
isbn 0898714427
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009116874
oclc_num 247652788
open_access_boolean
owner DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-703
DE-11
DE-188
owner_facet DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
DE-703
DE-11
DE-188
physical XXII, 362 S. graph. Darst.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher SIAM
record_format marc
spellingShingle Govaerts, Willy J.
Numerical methods for bifurcations of dynamical equilibria
Differentialgleichung - Numerisches Verfahren
Differenzierbares dynamisches System
Verzweigung <Mathematik>
Bifurcation theory
Differentiable dynamical systems
Differential equations Numerical solutions
Verzweigung Mathematik (DE-588)4078889-1 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Dynamisches System (DE-588)4013396-5 gnd
subject_GND (DE-588)4078889-1
(DE-588)4128130-5
(DE-588)4013396-5
title Numerical methods for bifurcations of dynamical equilibria
title_auth Numerical methods for bifurcations of dynamical equilibria
title_exact_search Numerical methods for bifurcations of dynamical equilibria
title_full Numerical methods for bifurcations of dynamical equilibria Willy J. F. Govaerts
title_fullStr Numerical methods for bifurcations of dynamical equilibria Willy J. F. Govaerts
title_full_unstemmed Numerical methods for bifurcations of dynamical equilibria Willy J. F. Govaerts
title_short Numerical methods for bifurcations of dynamical equilibria
title_sort numerical methods for bifurcations of dynamical equilibria
topic Differentialgleichung - Numerisches Verfahren
Differenzierbares dynamisches System
Verzweigung <Mathematik>
Bifurcation theory
Differentiable dynamical systems
Differential equations Numerical solutions
Verzweigung Mathematik (DE-588)4078889-1 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Dynamisches System (DE-588)4013396-5 gnd
topic_facet Differentialgleichung - Numerisches Verfahren
Differenzierbares dynamisches System
Verzweigung <Mathematik>
Bifurcation theory
Differentiable dynamical systems
Differential equations Numerical solutions
Verzweigung Mathematik
Numerisches Verfahren
Dynamisches System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009116874&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT govaertswillyj numericalmethodsforbifurcationsofdynamicalequilibria