Mathematical elasticity 3 Theory of shells

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ciarlet, Philippe G. 1938- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam u.a. North-Holland 2000
Ausgabe:1. ed.
Schriftenreihe:Studies in mathematics and its applications 29
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV013266013
003 DE-604
005 00000000000000.0
007 t|
008 000725s2000 xx d||| |||| 00||| eng d
020 |a 0444828915  |9 0-444-82891-5 
035 |a (OCoLC)175052863 
035 |a (DE-599)BVBBV013266013 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-384  |a DE-29T  |a DE-703  |a DE-91G  |a DE-355  |a DE-706  |a DE-634  |a DE-83  |a DE-11  |a DE-188  |a DE-20 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
100 1 |a Ciarlet, Philippe G.  |d 1938-  |e Verfasser  |0 (DE-588)143368362  |4 aut 
245 1 0 |a Mathematical elasticity  |n 3  |p Theory of shells  |c Philippe G. Ciarlet 
250 |a 1. ed. 
264 1 |a Amsterdam u.a.  |b North-Holland  |c 2000 
300 |a LX, 599 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Studies in mathematics and its applications  |v 29 
490 0 |a Studies in mathematics and its applications  |v ... 
773 0 8 |w (DE-604)BV000801244  |g 3 
830 0 |a Studies in mathematics and its applications  |v 29  |w (DE-604)BV000000646  |9 29 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009043867&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009043867 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 PHY 210f 2001 A 11710
DE-BY-TUM_katkey 1196318
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040020261061
DE-BY-UBR_call_number 805/UF 3000 C566
DE-BY-UBR_katkey 3260157
DE-BY-UBR_media_number TEMP11822517
_version_ 1822696474857701377
adam_text Titel: Bd. 3. Mathematical elasticity. Theory of shells Autor: Ciarlet, Philippe G Jahr: 2000 TABLE OF CONTENTS1 Mathematical Elasticity: General plan........... ii Mathematical Elasticity: General preface......... v Preface to Volume I....................... ix Preface to Volume II...................... xv Preface to Volume III.....................xxvii Differential geometry at a glance..............xxxix Three-dimensional elasticity in curvilinear coordinates at a glance.......................xlvii Two-dimensional linear shell equations at a glance ... Ii Two-dimensional nonlinear shell equations at a glance . lvii PART A. LINEAR SHELL THEORY Chapter 1. Three-dimensional linearized elasticity and Korn s inequalities in curvilinear coordinates 3 Introduction....................... 3 1.1. Three-dimensional linearized elasticity in Cartesian coordinates........................ 5 1.2. Curvilinear coordinates and metric tensor in a three- dimensional domain................... 12 1.3. The variational equations of three-dimensional linea- rized elasticity in curvilinear coordinates....... 22 1.4. Covariant derivatives and Christoffel symbols in a three- dimensional domain................... 32 1.5. Linearized change of metric tensor in curvilinear co- ordinates ......................... 35 1.6. The boundary value problem of three-dimensional lin- earized elasticity in curvilinear coordinates...... 37 The symbol indicates a section where most results are stated without proof. 1.7. A lemma of J. L. Lions; three-dimensional Korn s in- equalities and infinitesimal rigid displacement lemma in curvilinear coordinates................ 40 1.8. Existence and uniqueness theorem in curvilinear co- ordinates ......................... 50 1.9V. Complement: Recovery of a three-dimensional mani- fold from its metric tensor field............. 54 Exercises......................... 56 Chapter 2. Inequalities of Korn s type on surfaces ... CI Introduction....................... 61 2.1. Curvilinear coordinates and metric tensor on a surface 03 2.2. Curvature tensor on a surface ............. 73 2.3. Covariant derivatives and Christoffel symbols on a surface.......................... 85 2.4. Linearized change of metric tensor on a surface .... 90 2.5. Linearized change of curvature tensor on a surface . . 93 2.6. Inequalities of Korn s type and infinitesimal rigid dis- placement lemma on a general surface......... 100 2.7. Inequality of Korn s type and infinitesimal rigid dis- placement lemma on an elliptic surface........ 117 2.8 . Complement: Recovery of a surface from its metric and curvature tensor fields............... 130 Exercises......................... 132 Chapter 3. Asymptotic analysis of linearly elastic shells: Preliminaries and outline............137 Introduction.......................137 3.1. The three-dimensional equations of a linearly elastic shell............................141 3.2. The three-dimensional equations over a domain inde- pendent of e...................... . 149 3.3. Geometrical and mechanical preliminaries.......154 3.4. The two-dimensional equations of linearly elastic mem- brane and flexural shells derived by means of a formal asymptotic analysis...............161 3.5. Summary of the convergence theorems.........183 Exercises.........................190 Chapter 4. Linearly elastic elliptic membrane shells . . 193 Introduction.......................193 4.1. Linearly elastic elliptic membrane shells: Definition, example, and assumptions on the data; the three- dimensional equations over a domain independent ofe............................196 4.2. Averages with respect to the transverse variable . . . 201 4.3. A three-dimensional inequality of Korn s type for a family of linearly elastic elliptic membrane shells . . . 205 4.4. Convergence of the scaled displacements as e ? 0 . . 209 4.5. The two-dimensional equations of a linearly elastic el- liptic membrane shell; existence, uniqueness, and reg- ularity of solutions; formulation as a boundary value problem..........................223 4.6. Justification of the two-dimensional equations of a lin- early elastic elliptic membrane shell; commentary and refinements........................230 Exercises.........................235 Chapter 5. Linearly elastic generalized membrane shells.........................241 Introduction.......................241 5.1. Linearly elastic generalized membrane shells: Defini- tion and assumptions on the data; the three-dimensional equations over a domain independent of e.......245 5.2. Analytical preliminaries.................248 5.3. A three-dimensional inequality of Korn s type for a family of linearly elastic shells.............258 5.4. Generalized membrane shells of the first and second kinds...........................261 5.5. Admissible applied forces................264 5.6. Convergence of the scaled displacements as e -» 0 . . 266 5.7. The two-dimensional equations of a linearly elastic generalized membrane shell; existence and uniqueness of solutions........................287 5.8. Justification of the two-dimensional equations of a lin- early elastic generalized membrane shell; examples, commentary, and refinements..............291 Exercises.........................297 Chapter 6. Linearly elastic flexural shells.........299 Introduction.......................299 6.1. Linearly elastic flexural shells: Definition, examples, and assumptions on the data; the three-dimensional equations over a domain independent of e.......302 6.2. Convergence of the scaled displacements as e -- 0 . 308 6.3. The two-dimensional equations of a linearly elastic flexural shell; existence and uniqueness of solutions . 317 6.4. Justification of the two-dimensional equations of a lin- early elastic flexural shell; commentary and refine- ments ...........................323 Exercises.........................328 Chapter 7. Koiter s equations and other two-dimensional linear shell theories................333 Introduction.......................333 7.1. The two-dimensional Koiter equations for a linearly elastic shell: Existence, uniqueness, and regularity of solutions; formulation as a boundary value problem . 335 7.2. Justification of Koiter s equations for all types of lin- early elastic shells....................345 7.3. Koiter s equations: Additional commentary and bib- liographical notes ....................360 7.4. The two-dimensional Naghdi equations for a linearly elastic shell; existence and uniqueness of solutions . . 363 7.5. Other linear shell theories................367 7.6. Linear shallow shell theories..............369 Exercises.........................372 PART B. NONLINEAR SHELL THEORY Chapter 8. Asymptotic analysis of nonlinearly elastic shells: Preliminaries.................... 381 Introduction....................... 381 8.1. Three-dimensional nonlinear elasticity in Cartesian co- ordinates ......................... 386 8.2. Three-dimensional nonlinear elasticity in curvilinear coordinates........................ 392 8.3. The three-dimensional equations of a nonhnearly elas- tic shell..........................403 8.4. The three-dimensional equations over a domain inde- pendent of e.......................407 8.5. Geometrical and mechanical preliminaries.......411 8.6. The method of formal asymptotic expansions.....413 8.7. The leading term is of order zero............415 8.8. Identification of a two-dimensional variational prob- lem satisfied by the leading term............424 Exercises.........................430 Chapter 9. Nonlinearly elastic membrane shells.....433 Introduction.......................433 9.1. Nonlinearly elastic membrane shells: Definition, ex- amples, and assumptions on the data.........436 9.2. The two-dimensional equations as a variational prob- lem ............................443 9.3. The two-dimensional equations as a minimization prob- lem ............................445 9.4. The two-dimensional equations of a nonlinearly elastic membrane shell derived by means of a formal asymp- totic analysis; commentary...............447 9.5. The two-dimensional equations of a nonlinearly elastic membrane shell derived by means of T-convergence theory; commentary...................453 Exercises.........................465 Chapter 10. Nonlinearly elastic flexural shells......469 Introduction.......................469 10.1. Identification of a two-dimensional variational prob- lem satisfied by the leading term when there are nonzero admissible inextensional displacements ........472 10.2. Nonhnearly elastic flexural shells: Definition, exam- ples, and assumptions on the data...........502 10.3. The two-dimensional equations as a variational prob- lem ............................507 10.4. The two-dimensional equations as a minimization prob- lem ............................519 10.5. The two-dimensional equations of a nonlinearly elastic flexural shell derived by means of a formal asymptot ic analysis; commentary..................521 10.6. Existence of solutions to the minimization problem . 526 Exercises.........................539 Chapter 11. Koiter s equations and other two-dimensional nonlinear shell theories.............545 Introduction.......................545 11.1. The two-dimensional Koiter equations for a nonlin- early elastic shell.....................545 11.2. Other nonlinear shell theories..............5 19 11.3. Nonlinear shallow shell theories ............552 References ............................557 Index................................583
any_adam_object 1
author Ciarlet, Philippe G. 1938-
author_GND (DE-588)143368362
author_facet Ciarlet, Philippe G. 1938-
author_role aut
author_sort Ciarlet, Philippe G. 1938-
author_variant p g c pg pgc
building Verbundindex
bvnumber BV013266013
classification_rvk SK 950
ctrlnum (OCoLC)175052863
(DE-599)BVBBV013266013
discipline Mathematik
edition 1. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01404nam a2200337 cc4500</leader><controlfield tag="001">BV013266013</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000725s2000 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444828915</subfield><subfield code="9">0-444-82891-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)175052863</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013266013</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ciarlet, Philippe G.</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143368362</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical elasticity</subfield><subfield code="n">3</subfield><subfield code="p">Theory of shells</subfield><subfield code="c">Philippe G. Ciarlet</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam u.a.</subfield><subfield code="b">North-Holland</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LX, 599 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">29</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">...</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV000801244</subfield><subfield code="g">3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in mathematics and its applications</subfield><subfield code="v">29</subfield><subfield code="w">(DE-604)BV000000646</subfield><subfield code="9">29</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009043867&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009043867</subfield></datafield></record></collection>
id DE-604.BV013266013
illustrated Illustrated
indexdate 2024-12-23T15:24:40Z
institution BVB
isbn 0444828915
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009043867
oclc_num 175052863
open_access_boolean
owner DE-384
DE-29T
DE-703
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-706
DE-634
DE-83
DE-11
DE-188
DE-20
owner_facet DE-384
DE-29T
DE-703
DE-91G
DE-BY-TUM
DE-355
DE-BY-UBR
DE-706
DE-634
DE-83
DE-11
DE-188
DE-20
physical LX, 599 S. graph. Darst.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher North-Holland
record_format marc
series Studies in mathematics and its applications
series2 Studies in mathematics and its applications
spellingShingle Ciarlet, Philippe G. 1938-
Mathematical elasticity
Studies in mathematics and its applications
title Mathematical elasticity
title_auth Mathematical elasticity
title_exact_search Mathematical elasticity
title_full Mathematical elasticity 3 Theory of shells Philippe G. Ciarlet
title_fullStr Mathematical elasticity 3 Theory of shells Philippe G. Ciarlet
title_full_unstemmed Mathematical elasticity 3 Theory of shells Philippe G. Ciarlet
title_short Mathematical elasticity
title_sort mathematical elasticity theory of shells
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009043867&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000801244
(DE-604)BV000000646
work_keys_str_mv AT ciarletphilippeg mathematicalelasticity3