Algebraic groups and their birational invariants

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Voskresenskij, Valentin E. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, RI American Math. Soc. 1998
Schriftenreihe:Translations of mathematical monographs 179
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV013265014
003 DE-604
005 20000929
007 t|
008 000724s1998 xx |||| 00||| eng d
020 |a 0821809059  |9 0-8218-0905-9 
035 |a (OCoLC)245954687 
035 |a (DE-599)BVBBV013265014 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-29T  |a DE-11  |a DE-19 
082 0 |a 512.55 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
100 1 |a Voskresenskij, Valentin E.  |e Verfasser  |4 aut 
240 1 0 |a Algebraičeskie gruppy i ich biracional'nye invarianty 
245 1 0 |a Algebraic groups and their birational invariants  |c V. E. Voskresenskii 
264 1 |a Providence, RI  |b American Math. Soc.  |c 1998 
300 |a XIII, 218 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Translations of mathematical monographs  |v 179 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Lineare algebraische Gruppe  |0 (DE-588)4295326-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Lineare algebraische Gruppe  |0 (DE-588)4295326-1  |D s 
689 0 1 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 0 |5 DE-604 
830 0 |a Translations of mathematical monographs  |v 179  |w (DE-604)BV000002394  |9 179 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009042991&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009042991 

Datensatz im Suchindex

_version_ 1819577799916126208
adam_text Contents Preface xi Chapter 1. Forms and Galois Cohomology 1 §1 Group schemes and their cohomology 1.1 Group objects in a category 1 1.2 Group schemes 3 1.3 Affine groups, Hopf algebras 4 1.4 Group schemes over a field, algebraic groups 7 1.5 Probenius morphisms 7 1.6 Diagonal groups 10 1.7 Characters of group schemes 11 1.8 Bicharacters 13 1.9 Exactness of the functor D 14 1.10 Galois cohomology 16 1.11 Sheaves and cohomology in the etale topology 17 1.12 Cartier divisors and Weil divisors 19 §2 The Brauer group of a projective variety 20 2.1 The unramified Brauer group of a function field 20 2.2 The Kummer exact sequence 20 2.3 The Tate group, the Picard number, the Lefschetz number 21 §3 The theory of fc forms 23 3.1 Forms and one dimensional cohomology 23 3.2 Splitting fields of a fc form 24 3.3 Forms of group schemes 25 3.4 Groups of multiplicative type 25 3.5 Principal homogeneous spaces 27 3.6 Projective groups and associated fc forms 29 3.7 The Brauer group of a field 30 3.8 Chevalley groups 32 3.9 Semisimple groups 35 3.10 Inner and outer forms 36 3.11 Almost simple semisimple groups 37 3.12 The Weil restriction 37 Chapter 2. Birational Geometry of Algebraic Tori 41 §4 Birational invariants of linear algebraic groups 41 4.1 The variety of maximal tori of a reductive group 41 4.2 Structure of the generic torus of a semisimple group 42 vii viii CONTENTS 4.3 The Picard group and the Brauer group of a linear algebraic group 44 4.4 Criteria for birational equivalence of algebraic varieties 46 4.5 Projective models of linear algebraic groups 47 4.6 Flasque resolutions of a module 49 4.7 Stable equivalence 51 4.8 Chevalley modules 52 4.9 Tori of small dimension 57 4.10 Tori with a biquadratic splitting field 58 4.11 The semigroup of stable equivalence 59 §5 Tori with a cyclic splitting field 60 5.1 Devissage of a quasi split torus 60 5.2 Invertibility of the Picard class 62 5.3 The Chistov multiplication 62 §6 Stable rationality of varieties 65 6.1 Stably rational tori as orbit varieties 65 6.2 Covariants of linear represntations 67 6.3 Rationality of tori of type pq 69 6.4 Universal torsors 71 6.5 Counterexamples to Zariski s conjecture 73 Chapter 3. Invariants of Finite Transformation Groups 75 §7 Fields of invariants of finite transformation groups 75 7.1 Fields of invariants and their models 75 7.2 Invariants of finite abelian groups 76 7.3 The fields (k,pa), p 2 78 7.4 The fields (k, 2Q) 79 7.5 General case 79 7.6 Invariants of finite groups over an algebraically closed field 81 7.7 Invariants of finite linear groups 82 7.8 Invariants of finite groups acting on tori 85 7.9 Invariants of connected algebraic groups 87 §8 Invariant projective Demazure models 90 8.1 Cones and fans 90 8.2 Projective invariant fans 93 8.3 Birational invariants of tori without affect 97 8.4 The graded ring of a toric variety 99 Chapter 4. Arithmetic of Linear Algebraic Groups 103 §9 Tori over a finite field 103 9.1 Number of rational points 103 9.2 Zeta function 104 §10 Tori over local fields 106 10.1 Tori over reals 106 10.2 Tori over a nonarchimedean field 107 10.3 Integer structures in linear algebraic groups 107 10.4 Canonical integer form of a quasisplit torus 109 10.5 Canonical form of a norm torus 111 §11 Tori over global fields 111 CONTENTS ix 11.1 Adele groups 111 11.2 Canonical integer model of a torus over a number field 113 11.3 Cohomology of adele groups 114 11.4 Descent of the ground field 118 11.5 Approximation problems 119 11.6 Arithmetical meaning of the birational invariant H1(k,p(T)) 120 §12 Arithmetic of semisimple groups 122 12.1 Cohomology of semisimple groups 122 12.2 Weak approximation 124 12.3 The group H k, Pic X) 125 §13 Artin L functions 127 13.1 Partial Artin L functions 127 13.2 Theorems of Artin and Brauer 129 13.3 Global zeta function of a torus 131 Chapter 5. Tamagawa Numbers 133 §14 Haar measure on adele groups 133 14.1 Product of local measures 133 14.2 Computation of local volumes 134 14.3 Canonical convergence factors 136 14.4 The Tamagawa measure 137 14.5 Properties of Tamagawa numbers 142 14.6 Tamagawa numbers of algebraic tori 142 14.7 The group $ 147 14.8 Further development of the method 148 14.9 Chevalley group Z schemes 148 14.10 Gindikin Karpelevich integrals 149 14.11 Langlands method of computing Tamagawa numbers 153 14.12 Elementary computations of volumes of some classical quotients 160 §15 The Minkowski Siegel Tamagawa formula 163 15.1 Infinite products 163 15.2 The weight of a genus of an odd positive lattice 165 15.3 The weight of a genus of an even positive unimodular lattice 169 15.4 Sums of squares 169 15.5 Sum of two squares 172 15.6 Sum of four squares 173 15.7 Sum of six squares 173 15.8 Sum of eight squares 174 15.9 Sum of three squares 174 15.10 Sum of five squares 175 15.11 Sum of seven squares 176 Chapter 6. .R equivalence in Algebraic Groups 177 §16 The group of .R equivalence classes 177 16.1 First properties of /^ equivalence on varieties 177 16.2 Birational invariance of /^ equivalence in groups 179 §17 /^ equivalence on algebraic tori 180 17.1 Flasque resolution of a torus and /^ equivalence 180 17.2 Some special tori 182 x CONTENTS 17.3 The group T(k(t)) 184 §18 The unimodular group of a simple algebra 185 18.1 Reduction to the anisotropic kernel 185 18.2 The Whitehead group of a simple algebra 185 18.3 Platonov s examples 187 18.4 The Whitehead group of an isotropic group 188 18.5 inequivalence over special fields 188 §19 Algebras with involutions and groups of adjoint type 190 19.1 Algebras with involutions 190 19.2 Indecomposable algebras with involutions 190 19.3 Automorphisms of indecomposable algebras with involutions 192 19.4 Forms of algebras with involutions 192 19.5 The covering of Go 193 19.6 Merkurjev s theorems 194 Chapter 7. Index Formulas in Arithmetic of Algebraic Tori 197 §20 Arithmetic of the projective group of a field 197 20.1 Ratio of class numbers 197 20.2 Index formulas for quadratic extensions 200 20.3 The Hasse relations for an imaginary extension 201 §21 Arithmetic of a norm hypersurface 202 Bibliographical Remarks 207 Bibliography 211
any_adam_object 1
author Voskresenskij, Valentin E.
author_facet Voskresenskij, Valentin E.
author_role aut
author_sort Voskresenskij, Valentin E.
author_variant v e v ve vev
building Verbundindex
bvnumber BV013265014
classification_rvk SK 240
ctrlnum (OCoLC)245954687
(DE-599)BVBBV013265014
dewey-full 512.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.55
dewey-search 512.55
dewey-sort 3512.55
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01589nam a2200385 cb4500</leader><controlfield tag="001">BV013265014</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000929 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000724s1998 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821809059</subfield><subfield code="9">0-8218-0905-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)245954687</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013265014</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Voskresenskij, Valentin E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Algebraičeskie gruppy i ich biracional'nye invarianty</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic groups and their birational invariants</subfield><subfield code="c">V. E. Voskresenskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 218 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">179</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Translations of mathematical monographs</subfield><subfield code="v">179</subfield><subfield code="w">(DE-604)BV000002394</subfield><subfield code="9">179</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009042991&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009042991</subfield></datafield></record></collection>
id DE-604.BV013265014
illustrated Not Illustrated
indexdate 2024-12-23T15:24:39Z
institution BVB
isbn 0821809059
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009042991
oclc_num 245954687
open_access_boolean
owner DE-355
DE-BY-UBR
DE-29T
DE-11
DE-19
DE-BY-UBM
owner_facet DE-355
DE-BY-UBR
DE-29T
DE-11
DE-19
DE-BY-UBM
physical XIII, 218 S.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher American Math. Soc.
record_format marc
series Translations of mathematical monographs
series2 Translations of mathematical monographs
spellingShingle Voskresenskij, Valentin E.
Algebraic groups and their birational invariants
Translations of mathematical monographs
Algebraische Geometrie (DE-588)4001161-6 gnd
Lineare algebraische Gruppe (DE-588)4295326-1 gnd
subject_GND (DE-588)4001161-6
(DE-588)4295326-1
title Algebraic groups and their birational invariants
title_alt Algebraičeskie gruppy i ich biracional'nye invarianty
title_auth Algebraic groups and their birational invariants
title_exact_search Algebraic groups and their birational invariants
title_full Algebraic groups and their birational invariants V. E. Voskresenskii
title_fullStr Algebraic groups and their birational invariants V. E. Voskresenskii
title_full_unstemmed Algebraic groups and their birational invariants V. E. Voskresenskii
title_short Algebraic groups and their birational invariants
title_sort algebraic groups and their birational invariants
topic Algebraische Geometrie (DE-588)4001161-6 gnd
Lineare algebraische Gruppe (DE-588)4295326-1 gnd
topic_facet Algebraische Geometrie
Lineare algebraische Gruppe
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009042991&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000002394
work_keys_str_mv AT voskresenskijvalentine algebraiceskiegruppyiichbiracionalnyeinvarianty
AT voskresenskijvalentine algebraicgroupsandtheirbirationalinvariants