Interpolating cubic splines

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Knott, Gary D. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston ; Basel ; Berlin Birkhäuser 2000
Schriftenreihe:Progress in computer science and applied logic 18
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001cb4500
001 BV013075135
003 DE-604
005 20031202
007 t|
008 000307s2000 gw d||| |||| 00||| eng d
016 7 |a 958479054  |2 DE-101 
020 |a 3764341009  |c (Basel ...) Pp. : sfr 98.00  |9 3-7643-4100-9 
020 |a 0817641009  |c (Boston) Pp.  |9 0-8176-4100-9 
035 |a (OCoLC)42072291 
035 |a (DE-599)BVBBV013075135 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-824  |a DE-703  |a DE-20  |a DE-634  |a DE-11 
050 0 |a QA224 
082 0 |a 511/.42  |2 21 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 470  |0 (DE-625)143241:  |2 rvk 
100 1 |a Knott, Gary D.  |e Verfasser  |4 aut 
245 1 0 |a Interpolating cubic splines  |c Gary D. Knott 
264 1 |a Boston ; Basel ; Berlin  |b Birkhäuser  |c 2000 
300 |a XII, 244 S.  |b graph. Darst.  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in computer science and applied logic  |v 18 
500 |a Literaturverz. S. 233 - 236 
650 4 |a Interpolation 
650 4 |a Spline theory 
650 0 7 |a Kubische Form  |0 (DE-588)4569782-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Spline-Interpolation  |0 (DE-588)4182396-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Kubische Form  |0 (DE-588)4569782-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Spline-Interpolation  |0 (DE-588)4182396-5  |D s 
689 1 1 |a Kubische Form  |0 (DE-588)4569782-6  |D s 
689 1 |5 DE-604 
830 0 |a Progress in computer science and applied logic  |v 18  |w (DE-604)BV004157568  |9 18 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008908394&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008908394 

Datensatz im Suchindex

_version_ 1819604983460397056
adam_text Contents Preface ix 1 Mathematical Preliminaries 1 1.1 The Pythagorean Theorem 1 1.2 Vectors 3 1.3 Subspaces and Linear Independence 6 1.4 Vector Space Bases 8 1.5 Euclidean Length 11 1.6 The Euclidean Inner Product 12 1.7 Projection onto a Line 16 1.8 Planes in 3 Space 20 1.9 Coordinate System Orientation 24 1.10 The Cross Product 26 2 Curves 31 2.1 The Tangent Curve 32 2.2 Curve Parameterization 34 2.3 The Normal Curve 36 2.4 Envelope Curves 37 vi Contents 2.5 Arc Length Parameterization 38 2.6 Curvature 39 2.7 The Frenet Equations 41 2.8 Involutes and Evolutes 43 2.9 Helices 45 2.10 Signed Curvature 46 2.11 Inflection Points 47 3 Surfaces 51 3.1 The Gradient of a Function 52 3.2 The Tangent Space and Normal Vector 54 3.3 Derivatives 55 4 Function and Space Curve Interpolation 59 5 2D Function Interpolation 63 5.1 Lagrange Interpolating Polynomials 63 5.2 Whittaker s Interpolation Formula 65 5.3 Cubic Splines for 2D Function Interpolation 65 5.4 Estimating Slopes 68 5.5 Monotone 2D Cubic Spline Functions 69 5.6 Error in 2D Cubic Spline Interpolation Functions 72 6 A Spline Curves With Range Dimension d 75 7 Cubic Polynomial Space Curve Splines 77 7.1 Choosing the Segment Parameter Limits 81 7.2 Estimating Tangent Vectors 85 7.3 Bezier Polynomials 90 8 Double Tangent Cubic Splines 95 8.1 Kochanek Bartels Tangents 96 8.2 Fletcher McAllister Tangent Magnitudes 97 9 Global Cubic Space Curve Splines 101 9.1 Second Derivatives of Global Cubic Splines 108 9.2 Third Derivatives of Global Cubic Splines 112 9.3 A Variational Characterization of Natural Splines 114 9.4 Weighted v Splines 116 Contents vii 10 Smoothing Splines 123 10.1 Computing an Optimal Smoothing Spline 124 10.2 Computing the Smoothing Parameter 127 10.3 Best Fit Smoothing Cubic Splines 129 10.4 Monotone Smoothing Splines 130 11 Geometrically Continuous Cubic Splines 133 11.1 Beta Splines 136 12 Quadratic Space Curve Based Cubic Splines 139 13 Cubic Spline Vector Space Basis Functions 143 13.1 Bases for C1 and C2 Space Curve Cubic Splines 144 13.2 Cardinal Bases for Cubic Spline Vector Spaces 148 13.3 The B Spline Basis for Global Cubic Splines 151 14 Rational Cubic Splines 157 15 Two Spline Programs 159 15.1 Interpolating Cubic Splines Program 159 15.2 Optimal Smoothing Spline Program 178 16 Tensor Product Surface Splines 193 16.1 Bicubic Tensor Product Surface Patch Splines 193 16.2 A Generalized Tensor Product Patch Spline 197 16.3 Regular Grid Multi Patch Surface Interpolation 199 16.4 Estimating Tangent and Twist Vectors 200 16.5 Tensor Product Cardinal Basis Representation 203 16.6 Bicubic Splines with Variable Parameter Limits 205 16.7 Triangular Patches 205 16.8 Parametric Grids 207 16.9 3D Function Interpolation 208 17 Boundary Curve Based Surface Splines 211 17.1 Boundary Curve Based Bilinear Interpolation 211 17.2 Boundary Curve Based Bicubic Interpolation 213 17.3 General Boundary Curve Based Spline Interpolation . . . 215 viii Contents 18 Physical Splines 217 18.1 Computing a Space Curve Physical Spline Segment .... 222 18.2 Computing a 2D Physical Spline Segment 230 References 233 Index 237
any_adam_object 1
author Knott, Gary D.
author_facet Knott, Gary D.
author_role aut
author_sort Knott, Gary D.
author_variant g d k gd gdk
building Verbundindex
bvnumber BV013075135
callnumber-first Q - Science
callnumber-label QA224
callnumber-raw QA224
callnumber-search QA224
callnumber-sort QA 3224
callnumber-subject QA - Mathematics
classification_rvk SK 180
SK 470
ctrlnum (OCoLC)42072291
(DE-599)BVBBV013075135
dewey-full 511/.42
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.42
dewey-search 511/.42
dewey-sort 3511 242
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01881nam a22004931cb4500</leader><controlfield tag="001">BV013075135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031202 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000307s2000 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958479054</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764341009</subfield><subfield code="c">(Basel ...) Pp. : sfr 98.00</subfield><subfield code="9">3-7643-4100-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817641009</subfield><subfield code="c">(Boston) Pp.</subfield><subfield code="9">0-8176-4100-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)42072291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013075135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA224</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.42</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knott, Gary D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpolating cubic splines</subfield><subfield code="c">Gary D. Knott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston ; Basel ; Berlin</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 244 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in computer science and applied logic</subfield><subfield code="v">18</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 233 - 236</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interpolation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kubische Form</subfield><subfield code="0">(DE-588)4569782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Interpolation</subfield><subfield code="0">(DE-588)4182396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kubische Form</subfield><subfield code="0">(DE-588)4569782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spline-Interpolation</subfield><subfield code="0">(DE-588)4182396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kubische Form</subfield><subfield code="0">(DE-588)4569782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in computer science and applied logic</subfield><subfield code="v">18</subfield><subfield code="w">(DE-604)BV004157568</subfield><subfield code="9">18</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008908394&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008908394</subfield></datafield></record></collection>
id DE-604.BV013075135
illustrated Illustrated
indexdate 2024-12-23T15:20:07Z
institution BVB
isbn 3764341009
0817641009
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008908394
oclc_num 42072291
open_access_boolean
owner DE-824
DE-703
DE-20
DE-634
DE-11
owner_facet DE-824
DE-703
DE-20
DE-634
DE-11
physical XII, 244 S. graph. Darst. 24 cm
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher Birkhäuser
record_format marc
series Progress in computer science and applied logic
series2 Progress in computer science and applied logic
spellingShingle Knott, Gary D.
Interpolating cubic splines
Progress in computer science and applied logic
Interpolation
Spline theory
Kubische Form (DE-588)4569782-6 gnd
Spline-Interpolation (DE-588)4182396-5 gnd
subject_GND (DE-588)4569782-6
(DE-588)4182396-5
title Interpolating cubic splines
title_auth Interpolating cubic splines
title_exact_search Interpolating cubic splines
title_full Interpolating cubic splines Gary D. Knott
title_fullStr Interpolating cubic splines Gary D. Knott
title_full_unstemmed Interpolating cubic splines Gary D. Knott
title_short Interpolating cubic splines
title_sort interpolating cubic splines
topic Interpolation
Spline theory
Kubische Form (DE-588)4569782-6 gnd
Spline-Interpolation (DE-588)4182396-5 gnd
topic_facet Interpolation
Spline theory
Kubische Form
Spline-Interpolation
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008908394&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV004157568
work_keys_str_mv AT knottgaryd interpolatingcubicsplines