An introduction to the mathematical theory of waves

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Knobel, Roger (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, RI American Math. Soc. [u.a.] 2000
Schriftenreihe:Student mathematical library 3 : IAS, Park City mathematical subseries
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000001cb4500
001 BV012987543
003 DE-604
005 20010704
007 t|
008 000214s2000 xx ad|| |||| 00||| eng d
020 |a 0821820397  |9 0-8218-2039-7 
035 |a (OCoLC)41967027 
035 |a (DE-599)BVBBV012987543 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-20  |a DE-91G  |a DE-703  |a DE-355  |a DE-706  |a DE-634  |a DE-29T  |a DE-83  |a DE-11 
050 0 |a QA927 
082 0 |a 531/.1133  |2 21 
084 |a UF 5000  |0 (DE-625)145595:  |2 rvk 
084 |a UF 5100  |0 (DE-625)145596:  |2 rvk 
084 |a 35L05  |2 msc 
084 |a MAT 357f  |2 stub 
084 |a PHY 013f  |2 stub 
084 |a 76Bxx  |2 msc 
100 1 |a Knobel, Roger  |e Verfasser  |4 aut 
245 1 0 |a An introduction to the mathematical theory of waves  |c Roger Knobel 
264 1 |a Providence, RI  |b American Math. Soc. [u.a.]  |c 2000 
300 |a XIV, 196 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Student mathematical library  |v 3 : IAS, Park City mathematical subseries 
650 7 |a Golven (algemeen, natuurkunde)  |2 gtt 
650 4 |a Mouvement ondulatoire, Théorie du 
650 7 |a Mouvement ondulatoire, Théorie du  |2 ram 
650 7 |a Partiële differentiaalvergelijkingen  |2 gtt 
650 4 |a Wave-motion, Theory of 
650 0 7 |a Wellengleichung  |0 (DE-588)4065315-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Schwingung  |0 (DE-588)4053999-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Schwingungsgleichung  |0 (DE-588)4180567-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Physik  |0 (DE-588)4037952-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Wellenbewegung  |0 (DE-588)4467376-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Welle  |0 (DE-588)4065310-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Wellenbewegung  |0 (DE-588)4467376-0  |D s 
689 0 1 |a Mathematische Physik  |0 (DE-588)4037952-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Schwingung  |0 (DE-588)4053999-4  |D s 
689 1 |5 DE-604 
689 2 0 |a Welle  |0 (DE-588)4065310-9  |D s 
689 2 |5 DE-604 
689 3 0 |a Schwingungsgleichung  |0 (DE-588)4180567-7  |D s 
689 3 |5 DE-604 
689 4 0 |a Wellengleichung  |0 (DE-588)4065315-8  |D s 
689 4 |5 DE-604 
689 5 0 |a Welle  |0 (DE-588)4065310-9  |D s 
689 5 1 |a Mathematische Physik  |0 (DE-588)4037952-8  |D s 
689 5 |5 DE-604 
830 0 |a Student mathematical library  |v 3 : IAS, Park City mathematical subseries  |w (DE-604)BV013184751  |9 3 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008848408&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008848408 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 357f 2001 A 20858
0202 PHY 013f 2002 A 2560
DE-BY-TUM_katkey 1137290
DE-BY-TUM_location 01
02
DE-BY-TUM_media_number 040010542128
040020604146
DE-BY-UBR_call_number 80/UF 5000 K72
DE-BY-UBR_katkey 3039970
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069030915204
_version_ 1822748679591690240
adam_text Contents Foreword xi Preface xiii Part 1. Introduction Chapter 1. Introduction to Waves 3 §1.1. Wave phenomena 4 §1.2. Examples of waves 4 Chapter 2. A Mathematical Representation of Waves 7 §2.1. Representation of one dimensional waves 7 §2.2. Methods for visualizing functions of two variables 9 Chapter 3. Partial Differential Equations 13 §3.1. Introduction and examples 13 §3.2. An intuitive view 15 §3.3. Terminology 17 Part 2. Traveling and Standing Waves Chapter 4. Traveling Waves 23 §4.1. Traveling waves 23 vii viii Contents §4.2. Wave fronts and pulses 26 §4.3. Wave trains and dispersion 27 Chapter 5. The Korteweg deVries Equation 31 §5.1. The KdV equation 32 §5.2. Solitary wave solutions 32 Chapter 6. The Sine Gordon Equation 37 §6.1. A mechanical transmission line 37 §6.2. The Sine Gordon equation 38 §6.3. Traveling wave solutions 42 Chapter 7. The Wave Equation 45 §7.1. Vibrating strings 45 §7.2. A derivation of the wave equation 46 §7.3. Solutions of the wave equation 50 Chapter 8. D Alembert s Solution of the Wave Equation 53 §8.1. General solution of the wave equation 53 §8.2. The d Alembert form of a solution 55 Chapter 9. Vibrations of a Semi infinite String 59 §9.1. A semi infinite string with fixed end 59 §9.2. A semi infinite string with free end 64 Chapter 10. Characteristic Lines of the Wave Equation 67 §10.1. Domain of dependence and range of influence 67 §10.2. Characteristics and solutions of the wave equation 69 §10.3. Solutions of the semi infinite problem 73 Chapter 11. Standing Wave Solutions of the Wave Equation 77 §11.1. Standing waves 77 §11.2. Standing wave solutions of the wave equation 78 §11.3. Standing waves of a finite string 80 §11.4. Modes of vibration 83 Contents ix Chapter 12. Standing Waves of a Nonhomogeneous String 87 §12.1. The wave equation for a nonhomogeneous string 87 §12.2. Standing waves of a finite string 88 §12.3. Modes of vibration 90 §12.4. Numerical calculation of natural frequencies 91 Chapter 13. Superposition of Standing Waves 95 §13.1. Finite superposition 95 §13.2. Infinite superposition 98 Chapter 14. Fourier Series and the Wave Equation 101 §14.1. Fourier sine series 101 §14.2. Fourier series solution of the wave equation 106 Part 3. Waves in Conservation Laws Chapter 15. Conservation Laws 113 §15.1. Derivation of a general scalar conservation law 113 §15.2. Constitutive equations 116 Chapter 16. Examples of Conservation Laws 119 §16.1. Plug flow chemical reactor 119 §16.2. Diffusion 121 §16.3. Traffic flow 123 Chapter 17. The Method of Characteristics 127 §17.1. Advection equation 127 §17.2. Nonhomogeneous advection equation 131 §17.3. General linear conservation laws 133 §17.4. Nonlinear conservation laws 134 Chapter 18. Gradient Catastrophes and Breaking Times 137 §18.1. Gradient catastrophe 138 §18.2. Breaking time 141 x Contents Chapter 19. Shock Waves 145 §19.1. Piecewise smooth solutions of a conservation law 145 §19.2. Shock wave solutions of a conservation law 147 Chapter 20. Shock Wave Example: Traffic at a Red Light 153 §20.1. An initial value problem 153 §20.2. Shock wave solution 154 Chapter 21. Shock Waves and the Viscosity Method 159 §21.1. Another model of traffic flow 159 §21.2. Traveling wave solutions of the new model 161 §21.3. Viscosity 163 Chapter 22. Rarefaction Waves 165 §22.1. An example of a rarefaction wave 165 §22.2. Stopped traffic at a green light 169 Chapter 23. An Example with Rarefaction and Shock Waves 173 Chapter 24. Nonunique Solutions and the Entropy Condition 181 §24.1. Nonuniqueness of piecewise smooth solutions 181 §24.2. The entropy condition 183 Chapter 25. Weak Solutions of Conservation Laws 187 §25.1. Classical solutions 187 §25.2. The weak form of a conservation law 188 Bibliography 193 Index 195
any_adam_object 1
author Knobel, Roger
author_facet Knobel, Roger
author_role aut
author_sort Knobel, Roger
author_variant r k rk
building Verbundindex
bvnumber BV012987543
callnumber-first Q - Science
callnumber-label QA927
callnumber-raw QA927
callnumber-search QA927
callnumber-sort QA 3927
callnumber-subject QA - Mathematics
classification_rvk UF 5000
UF 5100
classification_tum MAT 357f
PHY 013f
ctrlnum (OCoLC)41967027
(DE-599)BVBBV012987543
dewey-full 531/.1133
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531/.1133
dewey-search 531/.1133
dewey-sort 3531 41133
dewey-tens 530 - Physics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02719nam a22006851cb4500</leader><controlfield tag="001">BV012987543</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20010704 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000214s2000 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821820397</subfield><subfield code="9">0-8218-2039-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)41967027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012987543</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA927</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.1133</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5000</subfield><subfield code="0">(DE-625)145595:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5100</subfield><subfield code="0">(DE-625)145596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35L05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76Bxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knobel, Roger</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to the mathematical theory of waves</subfield><subfield code="c">Roger Knobel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc. [u.a.]</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 196 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Student mathematical library</subfield><subfield code="v">3 : IAS, Park City mathematical subseries</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Golven (algemeen, natuurkunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mouvement ondulatoire, Théorie du</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mouvement ondulatoire, Théorie du</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave-motion, Theory of</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingungsgleichung</subfield><subfield code="0">(DE-588)4180567-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Welle</subfield><subfield code="0">(DE-588)4065310-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schwingung</subfield><subfield code="0">(DE-588)4053999-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Welle</subfield><subfield code="0">(DE-588)4065310-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Schwingungsgleichung</subfield><subfield code="0">(DE-588)4180567-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Welle</subfield><subfield code="0">(DE-588)4065310-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Student mathematical library</subfield><subfield code="v">3 : IAS, Park City mathematical subseries</subfield><subfield code="w">(DE-604)BV013184751</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008848408&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008848408</subfield></datafield></record></collection>
id DE-604.BV012987543
illustrated Illustrated
indexdate 2024-12-23T15:17:12Z
institution BVB
isbn 0821820397
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008848408
oclc_num 41967027
open_access_boolean
owner DE-20
DE-91G
DE-BY-TUM
DE-703
DE-355
DE-BY-UBR
DE-706
DE-634
DE-29T
DE-83
DE-11
owner_facet DE-20
DE-91G
DE-BY-TUM
DE-703
DE-355
DE-BY-UBR
DE-706
DE-634
DE-29T
DE-83
DE-11
physical XIV, 196 S. Ill., graph. Darst.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher American Math. Soc. [u.a.]
record_format marc
series Student mathematical library
series2 Student mathematical library
spellingShingle Knobel, Roger
An introduction to the mathematical theory of waves
Student mathematical library
Golven (algemeen, natuurkunde) gtt
Mouvement ondulatoire, Théorie du
Mouvement ondulatoire, Théorie du ram
Partiële differentiaalvergelijkingen gtt
Wave-motion, Theory of
Wellengleichung (DE-588)4065315-8 gnd
Schwingung (DE-588)4053999-4 gnd
Schwingungsgleichung (DE-588)4180567-7 gnd
Mathematische Physik (DE-588)4037952-8 gnd
Wellenbewegung (DE-588)4467376-0 gnd
Welle (DE-588)4065310-9 gnd
subject_GND (DE-588)4065315-8
(DE-588)4053999-4
(DE-588)4180567-7
(DE-588)4037952-8
(DE-588)4467376-0
(DE-588)4065310-9
title An introduction to the mathematical theory of waves
title_auth An introduction to the mathematical theory of waves
title_exact_search An introduction to the mathematical theory of waves
title_full An introduction to the mathematical theory of waves Roger Knobel
title_fullStr An introduction to the mathematical theory of waves Roger Knobel
title_full_unstemmed An introduction to the mathematical theory of waves Roger Knobel
title_short An introduction to the mathematical theory of waves
title_sort an introduction to the mathematical theory of waves
topic Golven (algemeen, natuurkunde) gtt
Mouvement ondulatoire, Théorie du
Mouvement ondulatoire, Théorie du ram
Partiële differentiaalvergelijkingen gtt
Wave-motion, Theory of
Wellengleichung (DE-588)4065315-8 gnd
Schwingung (DE-588)4053999-4 gnd
Schwingungsgleichung (DE-588)4180567-7 gnd
Mathematische Physik (DE-588)4037952-8 gnd
Wellenbewegung (DE-588)4467376-0 gnd
Welle (DE-588)4065310-9 gnd
topic_facet Golven (algemeen, natuurkunde)
Mouvement ondulatoire, Théorie du
Partiële differentiaalvergelijkingen
Wave-motion, Theory of
Wellengleichung
Schwingung
Schwingungsgleichung
Mathematische Physik
Wellenbewegung
Welle
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008848408&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV013184751
work_keys_str_mv AT knobelroger anintroductiontothemathematicaltheoryofwaves