Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:German
Veröffentlicht: Berlin [u.a.] Springer 2000
Schriftenreihe:Lecture notes in physics 540
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV012932456
003 DE-604
005 20090507
007 t|
008 991221s2000 gw |||| 01||| ger d
016 7 |a 958131511  |2 DE-101 
020 |a 3540670734  |c Pp. : DM 149.00  |9 3-540-67073-4 
035 |a (OCoLC)43311748 
035 |a (DE-599)BVBBV012932456 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-355  |a DE-703  |a DE-91G  |a DE-706  |a DE-634  |a DE-83 
050 0 |a QC173.6 
082 0 |a 530.11  |2 21 
084 |a UD 8220  |0 (DE-625)145543:  |2 rvk 
084 |a PHY 042f  |2 stub 
245 1 0 |a Einstein's field equations and their physical implications  |b selected essays in honour of Jürgen Ehlers  |c Bernd G. Schmidt (ed.) 
264 1 |a Berlin [u.a.]  |b Springer  |c 2000 
300 |a XIII, 433 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in physics  |v 540 
650 4 |a Einstein field equations 
650 0 7 |a Einstein-Feldgleichungen  |0 (DE-588)4013941-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Feldgleichung  |0 (DE-588)4131471-2  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
655 7 |0 (DE-588)4016928-5  |a Festschrift  |2 gnd-content 
689 0 0 |a Feldgleichung  |0 (DE-588)4131471-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Einstein-Feldgleichungen  |0 (DE-588)4013941-4  |D s 
689 1 |5 DE-604 
700 1 |a Schmidt, Bernd G.  |d 1941-  |e Sonstige  |0 (DE-588)121649067  |4 oth 
700 1 |a Ehlers, Jürgen  |d 1929-2008  |0 (DE-588)121317374  |4 hnr 
830 0 |a Lecture notes in physics  |v 540  |w (DE-604)BV000003166  |9 540 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008805933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008805933 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 PHY 042f 2002 A 3051
DE-BY-TUM_katkey 1158717
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020619745
DE-BY-UBR_call_number 8011/UD 8220
84/UD 8220
DE-BY-UBR_katkey 2432693
DE-BY-UBR_location 82
DE-BY-UBR_media_number TEMP11850770
069022218792
_version_ 1822677940567015424
adam_text CONTENTS SELECTED SOLUTIONS OF EINSTEIN*S FIELD EQUATIONS: THEIR ROLE IN GENERAL RELATIVITY AND ASTROPHYSICS JI* R´ * BI* C´ AK ...................................................... 1 1 INTRODUCTION AND A FEW EXCURSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 A WORD ON THE ROLE OF EXPLICIT SOLUTIONS IN OTHER PARTS OF PHYSICS AND ASTROPHYSICS . . . . . . . . . . . . . . . . 3 1.2 EINSTEIN*S FIELD EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 *JUST SO* NOTES ON THE SIMPLEST SOLUTIONS: THE MINKOWSKI, DE SITTER, AND ANTI-DE SITTER SPACETIMES . . . . . . . . . . . . . . . . . . . 8 1.4 ON THE INTERPRETATION AND CHARACTERIZATION OF METRICS . . . . . . . 11 1.5 THE CHOICE OF SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 THE OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 THE SCHWARZSCHILD SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 SPHERICALLY SYMMETRIC SPACETIMES . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 THE SCHWARZSCHILD METRIC AND ITS ROLE IN THE SOLAR SYSTEM . . 20 2.3 SCHWARZSCHILD METRIC OUTSIDE A COLLAPSING STAR . . . . . . . . . . . . . 21 2.4 THE SCHWARZSCHILD*KRUSKAL SPACETIME . . . . . . . . . . . . . . . . . . . . . 25 2.5 THE SCHWARZSCHILD METRIC AS A CASE AGAINST LORENTZ-COVARIANT APPROACHES . . . . . . . . . . . . . . . . . . . . 28 2.6 THE SCHWARZSCHILD METRIC AND ASTROPHYSICS . . . . . . . . . . . . . . . . 29 3 THE REISSNER*NORDSTR¨ OM SOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 REISSNER*NORDSTR¨ OM BLACK HOLES AND THE QUESTION OF COSMIC CENSORSHIP . . . . . . . . . . . . . . . . . . . . 32 3.2 ON EXTREME BLACK HOLES, D -DIMENSIONAL BLACK HOLES, STRING THEORY AND *ALL THAT* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 THE KERR METRIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1 BASIC FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 THE PHYSICS AND ASTROPHYSICS AROUND ROTATING BLACK HOLES . 47 4.3 ASTROPHYSICAL EVIDENCE FOR A KERR METRIC . . . . . . . . . . . . . . . . . . 50 5 BLACK HOLE UNIQUENESS AND MULTI-BLACK HOLE SOLUTIONS . . . . . . . . . . . 52 6 ON STATIONARY AXISYMMETRIC FIELDS AND RELATIVISTIC DISKS . . . . . . . . 55 6.1 STATIC WEYL METRICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 RELATIVISTIC DISKS AS SOURCES OF THE KERR METRIC AND OTHER STATIONARY SPACETIMES . . . . . . . . . . . . . . . . . . . . . . . . . 57 X CONTENTS 6.3 UNIFORMLY ROTATING DISKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 TAUB-NUT SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.1 A NEW WAY TO THE NUT METRIC . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.2 TAUB-NUT PATHOLOGIES AND APPLICATIONS. . . . . . . . . . . . . . . . . . . 64 8 PLANE WAVES AND THEIR COLLISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.1 PLANE-FRONTED WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.2 PLANE-FRONTED WAVES: NEW DEVELOPMENTS AND APPLICATIONS . . 71 8.3 COLLIDING PLANE WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 9 CYLINDRICAL WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9.1 CYLINDRICAL WAVES AND THE ASYMPTOTIC STRUCTURE OF 3-DIMENSIONAL GENERAL RELATIVITY . . . . . . . . . . . . . . . . . . . . . . . 78 9.2 CYLINDRICAL WAVES AND QUANTUM GRAVITY . . . . . . . . . . . . . . . . . . 82 9.3 CYLINDRICAL WAVES: A MISCELLANY . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10 ON THE ROBINSON*TRAUTMAN SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11 THE BOOST-ROTATION SYMMETRIC RADIATIVE SPACETIMES . . . . . . . . . . . . 88 12 THE COSMOLOGICAL MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 12.1 SPATIALLY HOMOGENEOUS COSMOLOGIES . . . . . . . . . . . . . . . . . . . . . . . 95 12.2 INHOMOGENEOUS COSMOLOGIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 13 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 THE CAUCHY PROBLEM FOR THE EINSTEIN EQUATIONS HELMUT FRIEDRICH, ALAN RENDALL ................................... 127 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2 BASIC OBSERVATIONS AND CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 2.1 THE PRINCIPAL SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 2.2 THE CONSTRAINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 2.3 THE BIANCHI IDENTITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2.4 THE EVOLUTION EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 2.5 ASSUMPTIONS AND CONSEQUENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 3 PDE TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 3.1 SYMMETRIC HYPERBOLIC SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 3.2 SYMMETRIC HYPERBOLIC SYSTEMS ON MANIFOLDS . . . . . . . . . . . . . . . 157 3.3 OTHER NOTIONS OF HYPERBOLICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4 REDUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.1 HYPERBOLIC SYSTEMS FROM THE ADM EQUATIONS . . . . . . . . . . . . . . 167 4.2 THE EINSTEIN*EULER SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.3 THE INITIAL BOUNDARY VALUE PROBLEM . . . . . . . . . . . . . . . . . . . . . . 185 4.4 THE EINSTEIN*DIRAC SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 4.5 REMARKS ON THE STRUCTURE OF THE CHARACTERISTIC SET . . . . . . . . . 200 5 LOCAL EVOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.1 LOCAL EXISTENCE THEOREMS FOR THE EINSTEIN EQUATIONS . . . . . . . . 201 5.2 UNIQUENESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.3 CAUCHY STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 5.4 MATTER MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 CONTENTS XI 5.5 AN EXAMPLE OF AN ILL-POSED INITIAL VALUE PROBLEM. . . . . . . . . . . 214 5.6 SYMMETRIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 6 OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 POST-NEWTONIAN GRAVITATIONAL RADIATION LUC BLANCHET ................................................... 225 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 1.1 ON APPROXIMATION METHODS IN GENERAL RELATIVITY . . . . . . . . . . 225 1.2 FIELD EQUATIONS AND THE NO-INCOMING-RADIATION CONDITION . . . 228 1.3 METHOD AND GENERAL PHYSICAL PICTURE . . . . . . . . . . . . . . . . . . . . . 231 2 MULTIPOLE DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 2.1 THE MATCHING EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 2.2 THE FIELD IN TERMS OF MULTIPOLE MOMENTS . . . . . . . . . . . . . . . . . 236 2.3 EQUIVALENCE WITH THE WILL*WISEMAN MULTIPOLE EXPANSION . . . . 238 3 SOURCE MULTIPOLE MOMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 3.1 MULTIPOLE EXPANSION IN SYMMETRIC TRACE-FREE FORM . . . . . . . . . 240 3.2 LINEARIZED APPROXIMATION TO THE EXTERIOR FIELD . . . . . . . . . . . . . 241 3.3 DERIVATION OF THE SOURCE MULTIPOLE MOMENTS . . . . . . . . . . . . . . . 242 4 POST-MINKOWSKIAN APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 4.1 MULTIPOLAR POST-MINKOWSKIAN ITERATION OF THE EXTERIOR FIELD . 244 4.2 THE *CANONICAL* MULTIPOLE MOMENTS . . . . . . . . . . . . . . . . . . . . . . 246 4.3 RETARDED INTEGRAL OF A MULTIPOLAR EXTENDED SOURCE . . . . . . . . . 247 5 RADIATIVE MULTIPOLE MOMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 5.1 DEFINITION AND GENERAL STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . 249 5.2 THE RADIATIVE QUADRUPOLE MOMENT TO 3PN ORDER . . . . . . . . . . 250 5.3 TAIL CONTRIBUTIONS IN THE TOTAL ENERGY FLUX. . . . . . . . . . . . . . . . 251 6 POST-NEWTONIAN APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.1 THE INNER METRIC TO 2.5PN ORDER . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.2 THE MASS-TYPE SOURCE MOMENT TO 2.5PN ORDER . . . . . . . . . . . . 256 7 POINT-PARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 7.1 HADAMARD PARTIE FINIE REGULARIZATION . . . . . . . . . . . . . . . . . . . . . 259 7.2 MULTIPOLE MOMENTS OF POINT-MASS BINARIES . . . . . . . . . . . . . . . . . 261 7.3 EQUATIONS OF MOTION OF COMPACT BINARIES . . . . . . . . . . . . . . . . . . 263 7.4 GRAVITATIONAL WAVEFORMS OF INSPIRALLING COMPACT BINARIES . . . 265 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 DUALITY AND HIDDEN SYMMETRIES IN GRAVITATIONAL THEORIES DIETER MAISON .................................................. 273 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 2 ELECTROMAGNETIC DUALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 3 DUALITY IN KA* LUZA*KLEIN THEORIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 3.1 DIMENSIONAL REDUCTION FROM D TO D DIMENSIONS . . . . . . . . . . . . 280 3.2 REDUCTION TO D = 4 DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 3.3 REDUCTION TO D = 3 DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 XII CONTENTS 3.4 REDUCTION TO D = 2 DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 4 GEROCH GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 5 STATIONARY BLACK HOLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 5.1 SPHERICALLY SYMMETRIC SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 306 5.2 UNIQUENESS THEOREMS FOR STATIC BLACK HOLES . . . . . . . . . . . . . . . 312 5.3 STATIONARY, AXIALLY SYMMETRIC BLACK HOLES . . . . . . . . . . . . . . . . . 314 6 ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 7 NON-LINEAR * -MODELS AND SYMMETRIC SPACES. . . . . . . . . . . . . . . . . . . . . 316 7.1 NON-COMPACT RIEMANNIAN SYMMETRIC SPACES . . . . . . . . . . . . . . . 316 7.2 PSEUDO-RIEMANNIAN SYMMETRIC SPACES . . . . . . . . . . . . . . . . . . . . 319 7.3 CONSISTENT TRUNCATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 8 STRUCTURE OF THE LIE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 TIME-INDEPENDENT GRAVITATIONAL FIELDS ROBERT BEIG, BERND SCHMIDT ..................................... 325 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 2 FIELD EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 2.1 GENERALITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 2.2 AXIAL SYMMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 2.3 ASYMPTOTIC FLATNESS: LICHNEROWICZ THEOREMS . . . . . . . . . . . . . . . 334 2.4 NEWTONIAN LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 2.5 EXISTENCE ISSUES AND THE NEWTONIAN LIMIT . . . . . . . . . . . . . . . . . 340 3 FAR FIELDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 3.1 FAR-FIELD EXPANSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 3.2 CONFORMAL TREATMENT OF INFINITY, MULTIPOLE MOMENTS . . . . . . . . 344 4 GLOBAL ROTATING SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 4.1 LINDBLOM*S THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 4.2 EXISTENCE OF STATIONARY ROTATING AXI-SYMMETRIC FLUID BODIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 4.3 THE NEUGEBAUER*MEINEL DISK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 5 GLOBAL NON-ROTATING SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 5.1 ELASTIC STATIC BODIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 5.2 ARE PERFECT FLUIDS O (3)-SYMMETRIC? . . . . . . . . . . . . . . . . . . . . . . 362 5.3 SPHERICALLY SYMMETRIC, STATIC PERFECT FLUID SOLUTIONS . . . . . . . 365 5.4 SPHERICALLY SYMMETRIC, STATIC EINSTEIN*VLASOV SOLUTIONS . . . . 370 GRAVITATIONAL LENSING FROM A GEOMETRIC VIEWPOINT VOLKER PERLICK .................................................. 373 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 2 SOME BASIC NOTIONS OF SPACETIME GEOMETRY . . . . . . . . . . . . . . . . . . . . 375 3 GRAVITATIONAL LENSING IN ARBITRARY SPACETIMES . . . . . . . . . . . . . . . . . . 378 3.1 CONJUGATE POINTS AND CUT POINTS . . . . . . . . . . . . . . . . . . . . . . . . . 381 3.2 THE GEOMETRY OF LIGHT CONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 3.3 CITERIA FOR MULTIPLE IMAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 3.4 FERMAT*S PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 CONTENTS XIII 3.5 MORSE INDEX THEORY FOR FERMAT*S PRINCIPLE . . . . . . . . . . . . . . . . . 399 4 GRAVITATIONAL LENSING IN GLOBALLY HYPERBOLIC SPACETIMES . . . . . . . . . 403 4.1 CRITERIA FOR MULTIPLE IMAGING IN GLOBALLY HYPERBOLIC SPACETIMES . . . . . . . . . . . . . . . . . . . . . . . . 405 4.2 MORSE THEORY IN GLOBALLY HYPERBOLIC SPACETIMES . . . . . . . . . . . 408 5 GRAVITATIONAL LENSING IN ASYMPTOTICALLY SIMPLE AND EMPTY SPACETIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 J¨ URGEN EHLERS * BIBLIOGRAPHY ................................. 427
any_adam_object 1
author_GND (DE-588)121649067
(DE-588)121317374
building Verbundindex
bvnumber BV012932456
callnumber-first Q - Science
callnumber-label QC173
callnumber-raw QC173.6
callnumber-search QC173.6
callnumber-sort QC 3173.6
callnumber-subject QC - Physics
classification_rvk UD 8220
classification_tum PHY 042f
ctrlnum (OCoLC)43311748
(DE-599)BVBBV012932456
dewey-full 530.11
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.11
dewey-search 530.11
dewey-sort 3530.11
dewey-tens 530 - Physics
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01931nam a2200481 cb4500</leader><controlfield tag="001">BV012932456</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090507 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">991221s2000 gw |||| 01||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">958131511</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540670734</subfield><subfield code="c">Pp. : DM 149.00</subfield><subfield code="9">3-540-67073-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)43311748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012932456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 042f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einstein's field equations and their physical implications</subfield><subfield code="b">selected essays in honour of Jürgen Ehlers</subfield><subfield code="c">Bernd G. Schmidt (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 433 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">540</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Einstein field equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einstein-Feldgleichungen</subfield><subfield code="0">(DE-588)4013941-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldgleichung</subfield><subfield code="0">(DE-588)4131471-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Feldgleichung</subfield><subfield code="0">(DE-588)4131471-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Einstein-Feldgleichungen</subfield><subfield code="0">(DE-588)4013941-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Bernd G.</subfield><subfield code="d">1941-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121649067</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehlers, Jürgen</subfield><subfield code="d">1929-2008</subfield><subfield code="0">(DE-588)121317374</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">540</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">540</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008805933&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008805933</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
(DE-588)4016928-5 Festschrift gnd-content
genre_facet Aufsatzsammlung
Festschrift
id DE-604.BV012932456
illustrated Not Illustrated
indexdate 2024-12-23T15:16:08Z
institution BVB
isbn 3540670734
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008805933
oclc_num 43311748
open_access_boolean
owner DE-355
DE-BY-UBR
DE-703
DE-91G
DE-BY-TUM
DE-706
DE-634
DE-83
owner_facet DE-355
DE-BY-UBR
DE-703
DE-91G
DE-BY-TUM
DE-706
DE-634
DE-83
physical XIII, 433 S.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher Springer
record_format marc
series Lecture notes in physics
series2 Lecture notes in physics
spellingShingle Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers
Lecture notes in physics
Einstein field equations
Einstein-Feldgleichungen (DE-588)4013941-4 gnd
Feldgleichung (DE-588)4131471-2 gnd
subject_GND (DE-588)4013941-4
(DE-588)4131471-2
(DE-588)4143413-4
(DE-588)4016928-5
title Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers
title_auth Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers
title_exact_search Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers
title_full Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.)
title_fullStr Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.)
title_full_unstemmed Einstein's field equations and their physical implications selected essays in honour of Jürgen Ehlers Bernd G. Schmidt (ed.)
title_short Einstein's field equations and their physical implications
title_sort einstein s field equations and their physical implications selected essays in honour of jurgen ehlers
title_sub selected essays in honour of Jürgen Ehlers
topic Einstein field equations
Einstein-Feldgleichungen (DE-588)4013941-4 gnd
Feldgleichung (DE-588)4131471-2 gnd
topic_facet Einstein field equations
Einstein-Feldgleichungen
Feldgleichung
Aufsatzsammlung
Festschrift
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008805933&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000003166
work_keys_str_mv AT schmidtberndg einsteinsfieldequationsandtheirphysicalimplicationsselectedessaysinhonourofjurgenehlers
AT ehlersjurgen einsteinsfieldequationsandtheirphysicalimplicationsselectedessaysinhonourofjurgenehlers