Introduction to discrete dynamical systems and chaos

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Martelli, Mario 1937- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York [u.a.] Wiley 1999
Schriftenreihe:A Wiley interscience publication
Wiley interscience series in discrete mathematics and optimization
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV012660942
003 DE-604
005 20090708
007 t
008 990714s1999 d||| |||| 00||| eng d
020 |a 0471319759  |9 0-471-31975-9 
035 |a (OCoLC)246608197 
035 |a (DE-599)BVBBV012660942 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-11 
050 0 |a QA614.8 
082 0 |a 515.352 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a UG 3900  |0 (DE-625)145629:  |2 rvk 
084 |a 17,1  |2 ssgn 
100 1 |a Martelli, Mario  |d 1937-  |e Verfasser  |0 (DE-588)138611092  |4 aut 
245 1 0 |a Introduction to discrete dynamical systems and chaos  |c Mario Martelli 
264 1 |a New York [u.a.]  |b Wiley  |c 1999 
300 |a XIII, 328 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a A Wiley interscience publication 
490 0 |a Wiley interscience series in discrete mathematics and optimization 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Diskretes System  |0 (DE-588)4401225-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Chaotisches System  |0 (DE-588)4316104-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Diskretes System  |0 (DE-588)4401225-1  |D s 
689 0 1 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 0 2 |a Chaotisches System  |0 (DE-588)4316104-2  |D s 
689 0 |5 DE-604 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602742&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-008602742 

Datensatz im Suchindex

_version_ 1804127319161307136
adam_text IMAGE 1 INTRODUCTION TO DISCRETE DYNAMICAL SYSTEMS AND CHAOS MARIO MARTELLI CALIFORNIA STATE UNIVERSITY FULLERTON A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK * CHICHESTER * WEINHEIM * BRISBANE * SINGAPORE * TORONTO IMAGE 2 CONTENTS CHAPTER 1. DISCRETE DYNAMICAL SYSTEMS 1 SECTION 1. DISCRETE DYNAMICAL SYSTEMS: DEFINITION 2 1. EXAMPLES OF DISCRETE DYNAMICAL SYSTEMS 2 2. DEFINITION OF DISCRETE DYNAMICAL SYSTEMS 9 GOALS OFTHIS BOOK 12 SECTION 2. STATIONARY STATES AND PERIODIC ORBITS 16 1. STATIONARY STATES 16 STABLE STATIONARY STATES 18 2. PERIODIC ORBITS 21 STABLE PERIODIC ORBITS 23 SECTION 3. CHAOTIC DYNAMICAL SYSTEMS 25 1. LIMIT POINTS, LIMIT SETS, AND APERIODIC ORBITS 25 2. UNSTABLE ORBITS AND CHAOTIC SYSTEMS 30 CHAOTIC BEHAVIOR 33 SECTION 4. EXAMPLES OF DISCRETE DYNAMICAL SYSTEMS 34 ONE-DIMENSIONAL EXAMPLE: BLOOD-CELL BIOLOGY 34 TWO-DIMENSIONAL EXAMPLES: PREDATOR-PREY MODELS 36 THREE-DIMENSIONAL EXAMPLE: METEOROLOGY 40 MULTIDIMENSIONAL EXAMPLE: NEURAL NETWORKS 42 CHAPTER 2. ONE-DIMENSIONAL DYNAMICAL SYSTEMS 45 SECTION 1. COBWEB AND CONJUGACY 46 1. THE COBWEB METHOD 46 2. CONJUGACY 50 LINEAR AND AFFINE SYSTEMS 53 SECTION 2. SINKS AND SOURCES 55 1. STATIONARY STATES AND PERIODIC ORBITS 55 2. SINKS 60 3. SOURCES 66 INSTABILITY 69 SECTION 3. GLOBAL SINKS 71 SECTION 4. PARAMETER SPACE ANALYSIS 75 1. FOLD, TRANSCRITICAL, AND PITCHFORK BIFURCATION 75 2. PERIOD-DOUBLING BIFURCATION 81 3. BIFURCATION: A THEORETICAL VIEWPOINT 85 SECTION 5. CONJUGACY AND CHAOS 93 ORBITS OF CONJUGATE SYSTEMS 93 CHAOS IN THELI-YORKE SENSE 95 CHAPTER 3. R1, MATRICES, AND FUNCTIONS 99 SECTION 1. STRUCTURE OF R1 AND CONTINUITY 100 V II IMAGE 3 V I II CONTENTS 1. NORMSAND SETS 100 VECTORS AND POINTS 100 EUCLIDEAN NORM 102 SUBSETS OF R1 102 OTHERNORMS 104 2. CONTINUITY 106 SECTION 2. OPERATOR NORM AND DERIVATIVE 111 1. OPERATOR NORM 111 OPERATOR NORM OF A MATRIX 113 2. DERIVATIVE AND MEAN VALUE INEQUALITY 117 FIRST-ORDER APPROXIMATION 118 MEAN VALUE INEQUALITY 120 CHAPTER 4. DISCRETE LINEAR DYNAMICAL SYSTEMS 123 SECTION 1. ORBITS OF LINEAR PROCESSES 124 SECTION 2. STABILITY AND INSTABILITY OF THE ORIGIN 127 THE ORIGIN AS AN ATTRACTOR 127 THE ORIGIN AS AREPELLER 128 SECTION 3. SPECTRAL DECOMPOSITION THEOREM 131 SDT: REAL, SEMISIMPLE EIGENVALUES 134 SDT: REAL, NOT SEMISIMPLE EIGENVALUES (*) 137 SDT: WHEN A(M) HAS COMPLEX ELEMENTS (*) 139 SECTION 4. THE ORIGIN AS A SADDLE POINT 146 STABLE AND UNSTABLE SUBSPACES 146 COMPARING TRAJECTORIES 149 SECTION 5. EIGENVALUES WITH MODULUS 1 (*) 151 THE ACTION OF M ON X { 152 THE ACTION OF M ON X_] 154 THE ACTION OF M ON X C 156 SECTION 6. AFFINE SYSTEMS 161 WHEN 1 IS NOT AN EIGENVALUE 161 WHEN 1 IS AN EIGENVALUE (*) 163 CHAPTER 5. NONLINEAR DYNAMICAL SYSTEMS 169 SECTION 1. BOUNDED INVARIANT SETS 170 CONTRACTIONS 170 DISSIPATIVE MAPS 171 QUASI-BOUNDED MAPS 173 SECTION 2. GLOBAL STABILITY OF FIXED POINTS 176 BANACH CONTRACTION PRINCIPLE 176 TRIANGULAER MAPS 177 GRADIENT MAPS (*) 179 SECTION 3. SINKS 182 SECTION 4. REPELLERS AND SADDLES 187 REPELLING STATES 187 SADDLES 189 SECTION 5. BIFURCATION 192 BIFURCATION FROM THE TRIVIAL BRANCH: X(A)=0 193 IMAGE 4 CONTENTS IX HOPF BIFURCATION 196 CHAPTER 6. CHAOTIC BEHAVIOR 199 SECTION 1. ATTRACTORS 200 SECTION 2. CHAOTIC DYNAMICAL SYSTEMS 205 LI-YORKE CHAOS IN R1 211 SECTION 3. FRACTAL DIMENSION 216 CAPACITY 217 CORRELATION DIMENSION 220 SECTION 4. LYAPUNOV EXPONENTS 227 CHAPTER 7. ANALYSIS OF FOUR DYNAMICAL SYSTEMS 237 SECTION 1. BLOOD-CELL POPULATION MODEL 238 SECTION 2. PREDATOR-PREY MODELS 243 SECTION 3. LORENZ MODEL OF ATMOSPHERIC BEHAVIOR 250 SECTION 4. NEURAL NETWORKS 256 APPENDIX 1. MATHEMATICA PROGRAMS 263 SECTION 1. GRAPHING 264 1. GRAPHING FUNCTIONS 264 2. FINDING FIXED POINTS AND PERIODIC ORBITS GRAPHICALLY 269 3. THE COBWEB METHOD 271 SECTION 2. ITERATES AND ORBITS 273 1. ITERATES 273 2. ORBITS 275 3. ORBITS OF TWO-DIMENSIONAL SYSTEMS 283 4. ORBITS OF LINEAR SYSTEMS 285 SECTION 3. BIFURCATION DIAGRAMS, LYAPUNOV EXPONENTS, AND CORRELATION DIMENSION 286 1. BIFURCATION DIAGRAMS 286 2. LYAPUNOV EXPONENTS 290 3. CORRELATION DIMENSION 293 SECTION 4. ODDS AND ENDS 296 1. MATRICES AND VECTORS OPERATIONS 296 2. SOLVING EQUATIONS 297 3. ASSIGNING A NUMERICAL VALUE TO THE RESULT OF AN OPERATION 299 APPENDIX 2. REFERENCES AND PROJECTS 301 1. REFERENCES 301 2. PROJECTS 305 APPENDIX 3. ANSWERS TO SELECTED PROBLEMS 311 INDEX 327
any_adam_object 1
author Martelli, Mario 1937-
author_GND (DE-588)138611092
author_facet Martelli, Mario 1937-
author_role aut
author_sort Martelli, Mario 1937-
author_variant m m mm
building Verbundindex
bvnumber BV012660942
callnumber-first Q - Science
callnumber-label QA614
callnumber-raw QA614.8
callnumber-search QA614.8
callnumber-sort QA 3614.8
callnumber-subject QA - Mathematics
classification_rvk SK 950
UG 3900
ctrlnum (OCoLC)246608197
(DE-599)BVBBV012660942
dewey-full 515.352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.352
dewey-search 515.352
dewey-sort 3515.352
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01700nam a2200433 c 4500</leader><controlfield tag="001">BV012660942</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090708 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990714s1999 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471319759</subfield><subfield code="9">0-471-31975-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246608197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012660942</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martelli, Mario</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138611092</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to discrete dynamical systems and chaos</subfield><subfield code="c">Mario Martelli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 328 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Wiley interscience publication</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley interscience series in discrete mathematics and optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskretes System</subfield><subfield code="0">(DE-588)4401225-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskretes System</subfield><subfield code="0">(DE-588)4401225-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008602742&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008602742</subfield></datafield></record></collection>
id DE-604.BV012660942
illustrated Illustrated
indexdate 2024-07-09T18:31:27Z
institution BVB
isbn 0471319759
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008602742
oclc_num 246608197
open_access_boolean
owner DE-703
DE-11
owner_facet DE-703
DE-11
physical XIII, 328 S. graph. Darst.
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Wiley
record_format marc
series2 A Wiley interscience publication
Wiley interscience series in discrete mathematics and optimization
spelling Martelli, Mario 1937- Verfasser (DE-588)138611092 aut
Introduction to discrete dynamical systems and chaos Mario Martelli
New York [u.a.] Wiley 1999
XIII, 328 S. graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
A Wiley interscience publication
Wiley interscience series in discrete mathematics and optimization
Dynamisches System (DE-588)4013396-5 gnd rswk-swf
Diskretes System (DE-588)4401225-1 gnd rswk-swf
Chaotisches System (DE-588)4316104-2 gnd rswk-swf
Diskretes System (DE-588)4401225-1 s
Dynamisches System (DE-588)4013396-5 s
Chaotisches System (DE-588)4316104-2 s
DE-604
GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602742&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Martelli, Mario 1937-
Introduction to discrete dynamical systems and chaos
Dynamisches System (DE-588)4013396-5 gnd
Diskretes System (DE-588)4401225-1 gnd
Chaotisches System (DE-588)4316104-2 gnd
subject_GND (DE-588)4013396-5
(DE-588)4401225-1
(DE-588)4316104-2
title Introduction to discrete dynamical systems and chaos
title_auth Introduction to discrete dynamical systems and chaos
title_exact_search Introduction to discrete dynamical systems and chaos
title_full Introduction to discrete dynamical systems and chaos Mario Martelli
title_fullStr Introduction to discrete dynamical systems and chaos Mario Martelli
title_full_unstemmed Introduction to discrete dynamical systems and chaos Mario Martelli
title_short Introduction to discrete dynamical systems and chaos
title_sort introduction to discrete dynamical systems and chaos
topic Dynamisches System (DE-588)4013396-5 gnd
Diskretes System (DE-588)4401225-1 gnd
Chaotisches System (DE-588)4316104-2 gnd
topic_facet Dynamisches System
Diskretes System
Chaotisches System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008602742&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT martellimario introductiontodiscretedynamicalsystemsandchaos