Stochastic interacting systems contact, voter and exclusion processes

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Liggett, Thomas M. 1944-2020 (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: Berlin [u.a.] Springer 1999
Schriftenreihe:Die Grundlehren der mathematischen Wissenschaften 324
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV012631681
003 DE-604
005 20140822
007 t|
008 990622s1999 gw d||| |||| 00||| ger d
020 |a 3540659951  |c Gb. : DM 169.00  |9 3-540-65995-1 
020 |a 9783540659952  |9 978-3-540-65995-2 
035 |a (OCoLC)264131631 
035 |a (DE-599)BVBBV012631681 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-739  |a DE-20  |a DE-29T  |a DE-384  |a DE-824  |a DE-91G  |a DE-703  |a DE-355  |a DE-19  |a DE-858  |a DE-706  |a DE-522  |a DE-634  |a DE-83  |a DE-526  |a DE-11  |a DE-188 
082 0 |a 519.2 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 60K35  |2 msc 
100 1 |a Liggett, Thomas M.  |d 1944-2020  |e Verfasser  |0 (DE-588)10877869X  |4 aut 
245 1 0 |a Stochastic interacting systems  |b contact, voter and exclusion processes  |c Thomas M. Liggett 
264 1 |a Berlin [u.a.]  |b Springer  |c 1999 
300 |a XII, 332 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Die Grundlehren der mathematischen Wissenschaften  |v 324 
650 0 7 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Wechselwirkung  |0 (DE-588)4064937-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistische Mechanik  |0 (DE-588)4056999-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 0 1 |a Wechselwirkung  |0 (DE-588)4064937-4  |D s 
689 0 |5 DE-604 
689 1 0 |a Statistische Mechanik  |0 (DE-588)4056999-8  |D s 
689 1 1 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 1 |5 DE-604 
830 0 |a Die Grundlehren der mathematischen Wissenschaften  |v 324  |w (DE-604)BV000000395  |9 324 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008581827&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008581827 

Datensatz im Suchindex

DE-BY-TUM_call_number 0048 MAT 605f 2001 A 22834
0102 MAT 605f 2001 A 22834
DE-BY-TUM_katkey 1103141
DE-BY-TUM_location LSB
01
DE-BY-TUM_media_number 040080107264
040020408240
_version_ 1820889746387238912
adam_text Contents Background and Tools 1 The Processes 1 Invariant Measures 4 Reversible Measures 5 Coupling, Monotonicity and Attractiveness 6 Correlation Inequalities 8 Duality 11 Subadditivity 12 Oriented Percolation 13 Domination by Product Measures 14 Renewal Sequences and Logconvexity 16 Translation Invariant Measures 21 Some Ergodic Theory 22 Branching Processes 25 Some Queuing Theory 26 The Martingale CLT 29 Part I. Contact Processes 31 1. Preliminaries 31 Description of the Process 31 The Graphical Representation; Additivity 32 The Upper Invariant Measure 34 Duality 35 Convergence 36 Monotonicity and Continuity in a 38 Rate of Growth 40 Survival and Extinction; Critical Values 42 Preview of Part I 44 2. The Process on the integer Lattice Zd 44 The Boundary of a Big Box Has Many Infected Sites 45 The Finite Space Time Condition 50 Comparison with Oriented Percolation 51 First Consequences of the Percolation Comparison 54 X Contents Exponential Bounds in the Supercritical Case 57 Exponential Decay Rates in the Subcritical Case 60 A Critical Exponent Inequality 69 3. The Process on {1 N}d 71 The Subcritical Case 72 The Supercritical Case 74 4. The Process on the Homogeneous Tree Tj 78 Some Critical Value Bounds 79 Branching Random Walk 80 Back to the Contact Process the Function 4 86 Extinction at the First Critical Value 91 Existence of an Intermediate Phase 94 The Sequence u and its Growth Parameter fi(X) 96 The Complete Convergence Theorem 103 Continuity of the Survival Probability 104 The Growth Profile 105 Invariant Measures in the Intermediate Regime First Construction . 109 Invariant Measures in the Intermediate Regime Second Construction 119 Strict Monotonicity of 0(A.) 123 5. Notes and References 125 Part II. Voter Models 139 1. Preliminaries 139 Description of the Process 139 Clustering and Coexistence 140 The Linear Voter Model 140 The Threshold Voter Model 142 The Graphical Representation 142 Duality when T = 1 143 Preview of Part II 145 2. Models with General Threshold and Range 146 Fixation for Large Thresholds 146 Clustering in One Dimension 147 Coexistence; the Threshold Contact Process 151 The Threshold Contact Process with Large Range 153 The Threshold Voter Model with Large Range 155 3. Models with Threshold =1 155 Duality for the Threshold Contact Process, T = 1 156 Reduction to One Dimension 158 The Convolution Equation 159 The Density 162 Contents XI The Renewal Sequence 167 Existence of a Nontrivial Invariant Measure 174 Nonnegativity for Sets that Contain No Singletons 180 Nonnegativity for General Sets 184 Strings of Length One 185 Strings of Length Greater than One 191 4. Notes and References 201 Part III. Exclusion Processes 209 1. Preliminaries 209 Description of the Process 209 Invariant Measures 210 Symmetric Systems 212 Coupling; the Graphical Representation 215 Translation Invariant Systems 215 First and Second Class Particles 218 The Tagged Particle Process 219 Preview of Part III 220 2. Asymmetric Processes on the Integers 220 Heuristics 222 Basic Assumption; Expected Results 224 Location of the Shock 225 Another View of the Shock 226 An Invariant Measure for the Process Viewed from X, 230 The Process X, Identifies the Shock 232 The Process Zr also Identifies the Shock 234 Behavior of the Shock First Moments 238 Behavior of the Shock Weak Law of Large Numbers 240 Behavior of the Shock Second Moments 242 Central Limit Behavior of the Shock 253 Dynamic Phase Transition 258 3. Invariant Measures for Processes on {1 N] 261 The Matrix Approach 262 Properties of the Matrices 264 Examples of Matrices D and E 266 Correlation Functions 268 The Partition Function 269 The Current 272 The Limiting Measure 273 An Application the Process with a Blockage 276 4. The Tagged Particle Process 278 The Process Viewed from the Tagged Particle; First Decomposition . 278 XII Contents Invariance and Ergodicity of the Environment 280 The Law of Large Numbers for X, 284 Asymptotic Normality for Mt 285 The Second Decomposition Beginning 286 The Basic Assumption 288 The Second Decomposition Conclusion 290 Asymptotic Normality for Xt 294 The Limit Is Not Degenerate 295 5. Notes and References 298 Bibliography 317 Index 331
any_adam_object 1
author Liggett, Thomas M. 1944-2020
author_GND (DE-588)10877869X
author_facet Liggett, Thomas M. 1944-2020
author_role aut
author_sort Liggett, Thomas M. 1944-2020
author_variant t m l tm tml
building Verbundindex
bvnumber BV012631681
classification_rvk SK 820
ctrlnum (OCoLC)264131631
(DE-599)BVBBV012631681
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01998nam a2200457 cb4500</leader><controlfield tag="001">BV012631681</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140822 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">990622s1999 gw d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540659951</subfield><subfield code="c">Gb. : DM 169.00</subfield><subfield code="9">3-540-65995-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540659952</subfield><subfield code="9">978-3-540-65995-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)264131631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012631681</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60K35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liggett, Thomas M.</subfield><subfield code="d">1944-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)10877869X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic interacting systems</subfield><subfield code="b">contact, voter and exclusion processes</subfield><subfield code="c">Thomas M. Liggett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 332 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">324</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wechselwirkung</subfield><subfield code="0">(DE-588)4064937-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wechselwirkung</subfield><subfield code="0">(DE-588)4064937-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Die Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">324</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">324</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008581827&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008581827</subfield></datafield></record></collection>
id DE-604.BV012631681
illustrated Illustrated
indexdate 2024-12-23T15:07:47Z
institution BVB
isbn 3540659951
9783540659952
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008581827
oclc_num 264131631
open_access_boolean
owner DE-739
DE-20
DE-29T
DE-384
DE-824
DE-91G
DE-BY-TUM
DE-703
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-858
DE-706
DE-522
DE-634
DE-83
DE-526
DE-11
DE-188
owner_facet DE-739
DE-20
DE-29T
DE-384
DE-824
DE-91G
DE-BY-TUM
DE-703
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-858
DE-706
DE-522
DE-634
DE-83
DE-526
DE-11
DE-188
physical XII, 332 S. graph. Darst.
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer
record_format marc
series Die Grundlehren der mathematischen Wissenschaften
series2 Die Grundlehren der mathematischen Wissenschaften
spellingShingle Liggett, Thomas M. 1944-2020
Stochastic interacting systems contact, voter and exclusion processes
Die Grundlehren der mathematischen Wissenschaften
Stochastischer Prozess (DE-588)4057630-9 gnd
Wechselwirkung (DE-588)4064937-4 gnd
Statistische Mechanik (DE-588)4056999-8 gnd
subject_GND (DE-588)4057630-9
(DE-588)4064937-4
(DE-588)4056999-8
title Stochastic interacting systems contact, voter and exclusion processes
title_auth Stochastic interacting systems contact, voter and exclusion processes
title_exact_search Stochastic interacting systems contact, voter and exclusion processes
title_full Stochastic interacting systems contact, voter and exclusion processes Thomas M. Liggett
title_fullStr Stochastic interacting systems contact, voter and exclusion processes Thomas M. Liggett
title_full_unstemmed Stochastic interacting systems contact, voter and exclusion processes Thomas M. Liggett
title_short Stochastic interacting systems
title_sort stochastic interacting systems contact voter and exclusion processes
title_sub contact, voter and exclusion processes
topic Stochastischer Prozess (DE-588)4057630-9 gnd
Wechselwirkung (DE-588)4064937-4 gnd
Statistische Mechanik (DE-588)4056999-8 gnd
topic_facet Stochastischer Prozess
Wechselwirkung
Statistische Mechanik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008581827&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000395
work_keys_str_mv AT liggettthomasm stochasticinteractingsystemscontactvoterandexclusionprocesses