Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997]
Gespeichert in:
Format: | Tagungsbericht Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1999
|
Schriftenreihe: | NATO ASI series
Ser. F, Computer and systems sciences ; 169 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV012556450 | ||
003 | DE-604 | ||
005 | 19990802 | ||
007 | t | ||
008 | 990504s1999 gw ad|| |||| 10||| eng d | ||
016 | 7 | |a 955262046 |2 DE-101 | |
020 | |a 354065478X |9 3-540-65478-X | ||
035 | |a (OCoLC)468422158 | ||
035 | |a (DE-599)BVBBV012556450 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-526 |a DE-83 |a DE-355 | ||
082 | 1 | |a 006.454 |2 22 | |
084 | |a ST 306 |0 (DE-625)143654: |2 rvk | ||
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
245 | 1 | 0 | |a Computational models of speech pattern processing |b [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] |c ed. by Keith Ponting |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1999 | |
300 | |a XXX, 446 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a NATO ASI series : Ser. F, Computer and systems sciences |v 169 | |
500 | |a Literaturangaben | ||
650 | 7 | |a Reconnaissance automatique de la parole - Congrès |2 ram | |
650 | 7 | |a Traitement automatique de la parole - Congrès |2 ram | |
650 | 0 | 7 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Spracherkennung |0 (DE-588)4003961-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1997 |z Saint Hélier |2 gnd-content | |
689 | 0 | 0 | |a Sprachverarbeitung |0 (DE-588)4116579-2 |D s |
689 | 0 | 1 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Automatische Spracherkennung |0 (DE-588)4003961-4 |D s |
689 | 1 | 1 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Ponting, K. M. |e Sonstige |4 oth | |
711 | 2 | |a Advanced Study Institute on Computational Models of Speech Pattern Processing |d 1997 |c Saint Hélier |j Sonstige |0 (DE-588)2174168-2 |4 oth | |
830 | 0 | |a NATO ASI series |v Ser. F, Computer and systems sciences ; 169 |w (DE-604)BV000013052 |9 169 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008525962&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008525962 |
Datensatz im Suchindex
_version_ | 1804127203423682560 |
---|---|
adam_text | TABLE OF CONTENTS FOREWORD KEITH M. PONTING
.....................................................................................................
VII 1. INSIGHT VS. PERFORMANCE
....................................................................................
VIII 2. DANGERS
.............................................................................................................
IX 3. HOT TOPICS
.........................................................................................................
IX 4. TOWARDS THE FUTURE
............................................................................................
X 4.1 INTEGRATING KNOWLEDGE SOURCES
.................................................................. XI
4.2 A UNIFIED THEORY?
.......................................................................................
XI REFERENCES
...............................................................................................................
XII SPEECH PATTERN PROCESSING ROGER K. MOORE
.......................................................................................................
1 1. THE STATE-OF-THE-ART IN
SPEECH.........................................................................
1 2. SPEECH PATTERNING
.............................................................................................
2 3. SPEECH PATTERN PROCESSING
................................................................................
3 4. WHITHER A UNIFIED THEORY?
...............................................................................
5 4.1 TOWARDSATHEORY
........................................................................................
5 4.2 PRACTICAL ISSUES
..........................................................................................
5 5. WHAT WE KNOW
................................................................................................
6 6. SOME THINGS WE DON*T KNOW
..........................................................................
7 7. THE WAY FORWARD
.............................................................................................
7 REFERENCES
...............................................................................................................
8 PSYCHO-ACOUSTICS AND SPEECH PERCEPTION LOUIS C.W. POLS
.......................................................................................................
10 1. INTRODUCTION
......................................................................................................
10 2. PSYCHO-ACOUSTICS
..............................................................................................
11 3. SPEECH PERCEPTION
............................................................................................
13 3.1 VOWEL REDUCTION AND SCHWA
..................................................................... 13
3.2 SPECTRO-TEMPORAL DYNAMICS OF FORINANT TRANSITIONS
................................ 14 3.3 CONSONANT REDUCTION
................................................................................
14 4. DISCUSSION
........................................................................................................
15 REFERENCES
...............................................................................................................
16 XIV TABLE OF CONTENTS ACOUSTIC MODELLING FOR LARGE VOCABULARY
CONTINUOUS SPEECH RECOGNITION STEVEYOUNG
..............................................................................................................
18 1. INTRODUCTION
......................................................................................................
18 2. OVERVIEW OF LVCSR
ARCHITECTURE....................................................................
18 3. FRONT END PROCESSING
.......................................................................................
21 4. BASIC PHONE MODELLING
....................................................................................
22 4.1 HMM PHONE MODELS
.................................................................................
22 4.2 HMM PARAMETER ESTIMATION
..................................................................... 24
4.3 CONTEXT-DEPENDENT PHONE MODELS
........................................................... 26 5.
ADAPTATION FOR LVCSR
.....................................................................................
30 5.1 MAXIMUM LIKELIHOOD LINEAR REGRESSION
................................................. 31 5.2 ESTIMATING THE
MLLR TRANSFORMS
............................................................ 31 6.
PROGRESS IN
LVCSR...........................................................................................
33 7. DISCRIMINATIVE TRAINING FOR LVCSR
................................................................ 34 8.
CONCLUSIONS
......................................................................................................
37 REFERENCES
...............................................................................................................
38 TREE-BASED DEPENDENCE MODELS FOR SPEECH RECOGNITION MARI OSTENDORF,
ASHVIN KANNAN AND ORITH RONEN
.................................................. 40 1. INTRODUCTION
......................................................................................................
40 2. HIDDEN TREE FRAMEWORK
...................................................................................
41 3. HIDDEN DEPENDENCE TREES
................................................................................
43 3.1 THE MATHEMATICAL FRAMEWORK
.................................................................. 43
3.2 APPLICATION TO SPEECH
...............................................................................
44 3.3 TOPOLOGY DESIGN AND PARAMETER ESTIMATION
............................................. 44 3.4
EXPERIMENTS...............................................................................................
46 4. MULTISCALE TREE PROCESSES
................................................................................
47 4.1 THE MATHEMATICAL FRAMEWORK
.................................................................. 47
4.2 APPLICATION TO SPEECH
...............................................................................
48 4.3 TOPOLOGY DESIGN AND PARAMETER ESTIMATION
............................................. 49 4.4
EXPERIMENTS...............................................................................................
50 5. DISCUSSION
........................................................................................................
51 REFERENCES
...............................................................................................................
52 CONNECTIONIST AND HYBRID MODELS FOR AUTOMATIC SPEECH RECOGNITION
JEAN-PAUL HATON
.......................................................................................................
54 1. INTRODUCTION
......................................................................................................
54 2. A BRIEF OVERVIEW OF NEURAL NETWORKS
............................................................ 55 2.1
BASIC PRINCIPLES
.........................................................................................
55 2.2 MAIN MODELS FOR ASR
...............................................................................
56 3. SIGNAL PROCESSING AND FEATURE EXTRACTION USING ANNS
................................... 57 4. NEURAL NETWORKS AS STATIC
PATTERN CLASSIFIERS ..................................................
58 4.1 SPEECH PATTERN CLASSIFICATION WITH PERCEPTRONS
........................................ 58 TABLE OF CONTENTS XV 4.2
FEATUREMAPS
..............................................................................................
58 5. DYNAMIC ASPECTS
..............................................................................................
59 5.1 POSITION OF THE PROBLEM
.............................................................................
59 5.2 TIME DELAYS
..............................................................................................
59 5.3 DYNAMIC CLASSIFIERS
..................................................................................
59 5.4 RECURRENT NNS
...........................................................................................
60 6. HYBRID
MODELS..................................................................................................
61 6.1 POSITION OF THE PROBLEM
.............................................................................
61 6.2 PROPOSED SOLUTIONS
....................................................................................
61 7. CONCLUSION
........................................................................................................
63 REFERENCES
...............................................................................................................
63 COMPUTATIONAL MODELS FOR AUDITORY SPEECH PROCESSING LI DENG
...................................................................................................................
67 I. INTRODUCTION
......................................................................................................
67 2. A NONLINEAR COMPUTATIONAL MODEL FOR BASILAR MEMBRANE WAVE MOTIONS
.......... 67 3. FREQUENCY-DOMAIN AND TIME-DOMAIN COMPUTATIONAL
SOLUTIONS TO THE BM MODEL
................................................................................................................
68 4. INTERVAL ANALYSIS OF AUDITORY MODEL*S OUTPUTS FOR TEMPORAL
INFORMATION EX- TRACTION
..............................................................................................................
70 5. IPIH REPRESENTATION OF CLEAN AND NOISY SPEECH SOUNDS
.................................... 71 6. SPEECH RECOGNITION
EXPERIMENTS
.......................................................................
73 7. SUMMARY AND DISCUSSIONS
................................................................................
75 REFERENCES
...............................................................................................................
76 SPEAKER ADAPTATION OF CDHMMS USING BAYESIAN LEARNING CLAUDIO VAIR AND
LUCIANO FISSORE
...........................................................................
78 1. INTRODUCTION
......................................................................................................
78 2. BAYESIAN ESTIMATION OF CDHMMS
.................................................................. 78
2.1 PRIOR DENSITY DEFINITION
............................................................................
79 2.2 FORGETTING
MECHANISM...............................................................................
79 2.3 PRIOR PARAMETER ESTIMATION AND MAP SOLUTION
........................................ 80 3. ACOUSTIC NORMALIZATION
....................................................................................
81 4. TASKS, CORPUS AND SYSTEM
................................................................................
81 5. SPEAKER ADAPTATION EXPERIMENTS
..................................................................... 82
6. CONCLUSIONS
......................................................................................................
83 REFERENCES
...............................................................................................................
83 DISCRIMINATIVE IMPROVEMENT OF THE REPRESENTATION SPACE FOR CONTINUOUS
SPEECH RECOGNITION ANGEL DE LA TORRE, ANTONIO M. PEINADO, ANTONIO J.
RUBIO, JOSE C. SEGURA ... ........ 84 1. INTRODUCTION
.........................................................................................................
84 2. DISCRIMINATIVE FEATURE EXTRACTION
.......................................................................
84 3. SGDFE ALGORITHM FOR CSR
.................................................................................
85 XVI TABLE OF CONTENTS 4. EXPERIMENTAL RESULTS
........................................................................................
86 5. CONCLUSIONS
......................................................................................................
89 REFERENCES
...............................................................................................................
89 DEALING WITH LOSS OF SYNCHRONISM IN MULTI-BAND CONTINUOUS SPEECH
RECOGNITION SYSTEMS CHRISTOPHE CERISARA
.................................................................................................
90 1. INTRODUCTION
......................................................................................................
90 2. FORCING SYNCHRONISM BETWEEN THE BANDS
....................................................... 91 2.1 FIRST
APPROACH
...........................................................................................
91 2.2
EXPERIMENTS...............................................................................................
92 3. MODELING LOSS OF SYNCHRONISM
.......................................................................
92 3.1 THEORETICAL APPROACH
................................................................................
92 3.2 EXPERIMENTAL APPROACH
.............................................................................
93 4. CONCLUSION
........................................................................................................
94 REFERENCES
...............................................................................................................
95 K-NEAREST NEIGHBOURS ESTIMATOR IN A HMM-BASED RECOGNITION SYSTEM
FABRICE LEFEVRE, CLAUDE MONTACIE AND MARIE-JOSE CARATY
..................................... 96 1. INTRODUCTION
......................................................................................................
96 2. K-NN ASSESSMENT
............................................................................................
96 3. K-NN ESTIMATOR IN HMM
.................................................................................
97 3.1 ADAPTATION
PRINCIPLE..................................................................................
98 3.2 HMM ESTIMATION IMPROVEMENT
................................................................ 98 4.
EVALUATIONS
.......................................................................................................
99 4.1 RECOGNITION RATES
.......................................................................................
99 4.2 SNALC EVALUATION
...................................................................................
100 5. PERSPECTIVES
......................................................................................................
101 REFERENCES
...............................................................................................................
101 ROBUST SPEECH RECOGNITION
SADAOKIFURUI............................................................................................................
102 1. MISMATCHES BETWEEN TRAINING AND TESTING
...................................................... 102 1.1 SPEECH
VARIATION
........................................................................................
102 1.2 INTER-SPEAKER VARIATION
.............................................................................
104 2. REDUCING MISMATCHES TO IMPROVE SPEECH RECOGNITION
.................................. 104 2.1 PRINCIPLES OF ADAPTIVE SPEECH
RECOGNITION .............................................. 104 2.2 THREE
PRINCIPAL ADAPTATION METHODS FOR REDUCING MISMATCHES .............. 106
2.3 IMPORTANT PRACTICAL ISSUES
.........................................................................
107 2.4 N-BEST-BASED UNSUPERVISED ADAPTATION
................................................... 108 3. CONCLUSION
........................................................................................................
109 REFERENCES
...............................................................................................................
109 TABLE OF CONTENTS XVII CHANNEL ADAPTATION KEITH M. PONTING
.....................................................................................................
112 I. INTRODUCTION
......................................................................................................
112 1.1 MATCHED CONDITION TRAINING
.......................................................................
112 1.2 ROBUST FEATURES
..........................................................................................
112 1.3 MODEL ADAPTATION
.......................................................................................
113 1.4 CHANNEL ADAPTATION
....................................................................................
113 1.5 SPEECH ENHANCEMENT
.................................................................................
113 2. MODELS OF DISTORTION
.........................................................................................
113 2.1 MINIMUM MEAN SQUARE ERROR
.....................................................................
114 2.2 ADDITIVE NOISE ESTIMATION
..........................................................................
114 3. METHODS FOR CHANNEL ADAPTATION
.......................................................................
115 3.1 GLOBAL TRANSFORMATIONS
..............................................................................
115 3.2 CLASS-SPECIFIC CORRECTIONS
..........................................................................
116 3.3 EMPIRICAL METHODS BASED ON STEREO DATA
................................................... 117 3.4 MODEL-BASED
COMPENSATION
.......................................................................
118 4. CONCLUSION
........................................................................................................
119 REFERENCES
...............................................................................................................
120 SPEAKER CHARACTERIZATION, SPEAKER ADAPTATION AND VOICE CONVERSION
SADAOKI
FURUI...........................................................................................................
122 1. INTRODUCTION
......................................................................................................
122 2. SPEAKER-CHARACTERIZATION
.................................................................................
122 3. SPEAKER RECOGNITION
........................................................................................
123 4. SPEAKER-ADAPTATION TECHNIQUES FOR SPEECH RECOGNITION
................................ 124 4.1 CLASSIFICATION OF
SPEAKER-ADAPTATIONLNORRNALIZATION METHODS ................ 124 4.2
SPEAKER CLUSTER SELECTION METHODS
.......................................................... 124 4.3
INTERPOLATED RE-ESTIMATION ALGORITHM
...................................................... 125 4.4 SPECTRAL
MAPPING ALGORITHM
.....................................................................
125 5. INDIVIDUALITY PROBLEMS IN SPEECH SYNTHESIS AND CODING
................................. 128 6. CONDUSION
.........................................................................................................
129 REFERENCES
...............................................................................................................
130 SPEAKER RECOGNITION
SADAOKIFURUI............................................................................................................
132 1. PRINCIPLES OF SPEAKER RECOGNITION
................................................................... 132
2. TEXT-INDEPENDENT SPEAKER RECOGNITION METHODS
............................................ 133 2.1
LONG-TERRN-STATISTICS-BASED METHODS
...................................................... 133 2.2 VQ-BASED
METHODS
...................................................................................
135 2.3 ERGODIC-HMM-BASED METHODS
................................................................. 135
2.4 SPEECH-RECOGNITION-B ASED METHODS
....................................................... 136 3.
TEXT-PROMPTED SPEAKER RECOGNITION
................................................................ 137 4.
NORMALIZATION AND ADAPTATION TECHNIQUES
...................................................... 137 4.1
PARAMETER-DOMAIN NORMALIZATION
............................................................ 138 XVIII
TABLE OF CONTENTS 4.2 LIKELIHOOD NORMALIZATION
.........................................................................
138 4.3 HMM ADAPTATION FOR NOISY CONDITIONS
................................................... 139 4.4 UPDATING
MODELS AND A PRIORI THRESHOLD FOR SPEAKER VERIFICATION ... ...... 139 5.
OPEN QUESTIONS AND CONCLUDING REMARKS
....................................................... 140 REFERENCES
...............................................................................................................
140 APPLICATION OF ACOUSTIC DISCRIMINATIVE TRAIMUG IN AN ERGODIC HMM FOR
SPEAKER IDENTIFICATION LEANDRO RODRIGUEZ LI* NARES AND CARMEN GARCIA
MATEO .......................................... 143 1. INTRODUCTION
......................................................................................................
143 2. EXPERIMENTAL CONDITIONS
..................................................................................
144 3. SYSTEM ARCHITECTURE
.........................................................................................
145 3.1 ACOUSTIC
SEGMENTATION..............................................................................
145 3.2 THE PTH-HMM MODEL
..............................................................................
145 4. EXPERIMENTAL RESULTS
........................................................................................
145 5. CONCLUSIONS
......................................................................................................
147 REFERENCES
...............................................................................................................
148 COMPARISON OF SEVERAL COMPENSATION TECHNIQUES FOR ROBUST SPEAKER
VERIFICATION LAURA DOCFO-FERNANDEZ AND CARMEN GARCIA-MATEO
............................................... 149 1. INTRODUCTION
......................................................................................................
149 2. THE HMM RECOGNITION SYSTEM
.........................................................................
151 3. MISMATCH COMPENSATION TECHNIQUES
............................................................... 151 3.1
CMS
..........................................................................................................
151 3.2 5M1
...........................................................................................................
152 3.3 SM2
...........................................................................................................
152 4. EXPERIMENTS AND RESULTS
..................................................................................
152 5. DISCUSSION AND CONCLUSION
..............................................................................
156 REFERENCES
...............................................................................................................
156 SEGMENTAL ACOUSTIC MODELING FOR SPEECH RECOGNITION MAN OSTENDORF
.........................................................................................................
157 I. INTRODUCTION
......................................................................................................
157 2. SEGMENTAL AND HIDDEN MARKOV MODELS
........................................................... 158 2.1
GENERAL MODELING FRAMEWORK
.................................................................. 159
2.2 MODELS OF FEATURE DYNAMICS
.................................................................... 161
3. RECOGNITION AND TRAINING
.................................................................................
165 3.1 RECOGNITION ALGORITHMS
............................................................................
165 3.2 PARAMETER ESTITNATION ALGORITLITNS
............................................................. 166 4.
SEGMENTAL FEATURES
..........................................................................................
168 5. SUNUNARY
...........................................................................................................
169 REFERENCES
...............................................................................................................
170 TABLE OF CONTCNTS XIX TRAJECTORY REPRESENTATIONS AND ACOUSTIC
DESCRIPTIONS FOR A SEGMENT-MODELLING APPROACH TO AUTOMATIC SPEECH
RECOGNITION WENDY J. HOLMES
.....................................................................................................
173 1. INTRODUCTION
......................................................................................................
173 2. MODELLING TRAJECTORIES IN SPEECH
.....................................................................
174 3. REPRESENTING AN UNOBSERVED TRAJECTORY WITH SEGMENTAL HMMS
.................... 175 3.1 CALCULATING SEGMENT PROBABILITIES
............................................................. 175 3.2
RECOGNITION EXPERIMENT
............................................................................
176 4. HMM RECOGNITION WITH FORMANT FEATURES
...................................................... 177 5. MODELLING
TRAJECTORIES OF CEPSTRUM AND FORMANT FEATURES
................................ 178 6. CONCLUSIONS
......................................................................................................
178 REFERENCES
...............................................................................................................
179 SUPRASEGMENTAL MODELLING E. NOETH, A. BATLINER, A. KIESSLING, R. KOMPE
AND H. NIEMANN ............................... 181 I. INTRODUCTION
......................................................................................................
181 2. THE VERBMOBIL SYSTEM
.....................................................................................
183 3. COMPUTATION OF PROSODIC INFORMATION
.............................................................. 183 3.1
EXTRACTION OF PROSODIC FEATURES
................................................................ 185 3.2
PROSODIC CLASSES
........................................................................................
185 3.3 NEW BOUNDARY LABELS: THE SYNTACTIC-PROSODIC M-LABELS
........................ 186 3.4 CLASSIFICATION OF PROSODIC
EVENTS.............................................................. 187
3.5 IMPROVING THE CLASSIFICATION RESULTS WITH STOCHASTIC LANGUAGE MODELS
. 187 3.6 PROSODIC SCORING OF WHGS
........................................................................
189 4. THE USE OF PROSODIC INFORMATION
.....................................................................
190 4.1 PROSODY AND SYNTAX * INTERACTION WILH THE TUG-GRAMMAR
...................... 190 4.2 PROSODY AND THE OTHER LINGUISTIC MODULES
............................................... 194 5. CONCLUDING
REMARKS
........................................................................................
196 REFERENCES
...............................................................................................................
196 COMPUTATIONAL MODELS FOR SPEECH PRODUCTION LI DENG
...................................................................................................................
199 1. INTRODUCTION
......................................................................................................
199 2. SPEECH PRODUCTION MODELS IN SCIENCE/TECHNOLOGY LITERATURES
........................... 200 3. DERIVATION OF DISCRETE-TIME VERSION
OF STATISTICAL TASK-DYNAMIC MODEL ............ 202 4. ALGORITHRNS FOR
LEARNING TASK-DYNAMIC MODEL PARAMETERS AND FOR LIKELI- HOOD COMPUTATION
.............................................................................................
204 4.1 MODEL WITH DETERMINISTIC, TIME-INVARIANT PARAMETERS
............................... 205 4.2 MODEL WITH RANDOM,
TIME-INVARIANT PARAMETERS ........................................ 207
4.3 MODEL WITH RANDOM, SMOOTHLY TIME-VARYING PARAMETERS
.......................... 208 4.4 DISCRIMINATIVE LEARNING OF PRODUCTION
MODELS* PARAMETERS ...................... 210 5. OTHER TYPES OF
COMPUTATIONAL MODELS OF SPEECH PRODUCTION ............................
210 6. SUMMARY AND DISCUSSIONS
................................................................................
212 REFERENCES
...............................................................................................................
212 XX TABLE OF CONTEOTS ARTICULATORY FEATURES AND ASSOCIATED PRODUCTION
MODELS IN STATISTICAL SPEECH RECOGNITION LI DENG
...................................................................................................................
214 1. INTRODUCTION
......................................................................................................
214 2. FUNCTIONAL DESCRIPTION OF HUMAN SPEECH COMMUNICATION AS AN
ENCODING- DECODING PROCESS
..............................................................................................
214 3. OVERVIEW OF THEORIES OF SPEECH PERCEPTION
...................................................... 215 4. A GENERAL
FRAMEWORK OF STATISTICAL SPEECH RECOGNITION
.................................... 216 5. BRIEF ANALYSIS OF WEAKNESSES
OF CURRENT SPEECH RECOGNITION TECHNOLOGY ......... 217 6. PHONOLOGICAL
MODEL: OVERLAPPING ARTICULATORY FEATURES AND RELATED HMMS ... 218 7.
TASK-DYNAMIC MODEL OF SPEECH PRODUCTION
...................................................... 219 8.
INTERFACING OVERLAPPING FEATURES TO TASK-DYNAMIC MODEL AND A GENERAL AR-
CHITECTURE FOR SPEECH RECOGNITION
.....................................................................
220 9. DISCUSSIONS: MACHINE SPEECH RECOGNITION
........................................................ 220 REFERENCES
...............................................................................................................
223 TALKER NORMALIZATION WITH ARTICULATORY ANALYSIS-BY-SYNTHESIS RICHARD
S. MCGOWAN
..............................................................................................
225 1. INTRODUCTION
......................................................................................................
225 2. NORMALIZATION PROCEDURE
..................................................................................
226 3. EXPERIMENTS
......................................................................................................
229 4. CONCLUSION
........................................................................................................
231 REFERENCES
...............................................................................................................
231 THE PSYCHOLINGUISTICS OF SPOKEN WORD RECOGNITION CYNTHIA M. CONNINE
AND THOMAS DEELMAN
............................................................ 233 1.
INTRODUCTION
......................................................................................................
233 2. OVERVIEW: MODELS OF SPOKEN WORD RECOGNITION
............................................... 233 3. CURRENCY OF
MAPPING: UNITS AND THE NATURE OF LEXICAL REPRESENTATIONS .............
235 4. TEMPORAL NATURE OF SPEECH: EARLY VS DELAYED COMMITMENT
.............................. 237 4.1 DELAYED COMMITMENT
................................................................................
238 5. MULTIPLE LEXICAL HYPOTHESES, LEXICAL COMPETITION AND GRADED
ACTIVATION.......... 239 6. LANGUAGE ARCHITECTURE: LEXICAL AND SEGMENTAL
LEVELS ...................................... 242 7. LANGUAGE
ARCHITECTURE: LEXICAL AND SENTENTIAL
................................................. 244 8. CONTRIBUTION OF
ATTENTION
..................................................................................
245 REFERENCES
...............................................................................................................
247 ISSUES IN USING MODELS FOR SELF EVALUATION AND CORRECTION OF SPEECH
MARIE-CHRISTINE HATON
.............................................................................................
252 1. INTRODUCTION
......................................................................................................
252 2. USING MODELS
....................................................................................................
253 3. NORM BUILDING
..................................................................................................
254 4. MATCHING BETWEEN THE SUBJECT*S WORLD AND THE TECHNICAL WORLD
....................... 255 5. SETTLEMENT OF THE SPEECH EDUCATION
PROGRAM .................................................... 256 TABLE
OF CONTENIS XXI 6. MANAGEMENT OF THE EDUCATION PROGRAM
............................................................ 257 7.
CONCLUSION
........................................................................................................
257 REFERENCES
...............................................................................................................
257 THE USE OF THE MAXIMUM LIKELIHOOD CRITERION IN LANGUAGE MODELLING
HERMANN
NEY...........................................................................................................
259 1. INTRODUCTION
......................................................................................................
259 2. PERPLEXITY AND MAXIMUM LIKELIHOOD
.............................................................. 260 3.
SMOOTHING AND DISCOUNTING FOR SPARSE DATA
................................................... 263 3.1 MODELFREE
DISCOUNTING AND TURING-GOOD ESTIMATES ................................
263 3.2 ABSOLUTE DISCOUNTING
................................................................................
266 4. PARTITIONING-BASED MODELS
...............................................................................
267 4.1 EQUIVALENCE CLASSES OF HISTORIES AND DECISION
TREES............................... 267 4.2 TWO-SIDED PARTITIONINGS AND
WORD CLASSES .............................................. 270 5. WORD
TRIGGER PAIRS
...........................................................................................
272 6. MAXIMUM ENTROPY APPROACH
...........................................................................
275 7. CONCLUSIONS
......................................................................................................
277 REFERENCES
...............................................................................................................
277 LANGUAGE MODEL ADAPTATION RENATO DEMON AND MARCELLO FEDERICO
................................................................... 280
1. INTRODUCTION
......................................................................................................
280 2. BACKGROUND ON LANGUAGE MODELS
.................................................................... 281
3. ADAPTATION PARADIGMS
......................................................................................
283 3.1 LM ADAPTATION IN DIALOGUE
SYSTEMS........................................................... 284
4. BASIC STATISTICAL METHODS
..................................................................................
285 4.1 MAXIMUM A-POSTERIORI ESTIMATION
............................................................. 285 4.2
LINEAR INTERPOLATION
...................................................................................
286 4.3 SUBLANGUAGES MIXTURE ADAPTATION
............................................................. 288 4.4
BACKING-OFF
...............................................................................................
288 4.5 MAXIMUM ENTROPY
....................................................................................
290 4.6 MINIMUM DISCRIMINATION INFORMATION
...................................................... 291 4.7
GENERALIZED ITERATIVE SCALING
.....................................................................
292 4.8 CACHE MODEL AND WORD
TRIGGERS.................................................................
293 5. PRACTICAL APPLICATIONS OF ADAPTATION PARADIGMS
................................................ 295 5.1 THE 1993 ARPA
EVALUATION METHOD
.......................................................... 295 5.2
MIXTURE BASED ADAPTATION
..........................................................................
296 5.3 ADAPTATION WITH A CACHE MODEL
................................................................. 298
5.4 ME AND MDI
ADAPTATION............................................................................
299 5.5 LM ADAPTATION IN INTERACTIVE SYSTEMS
....................................................... 299 6.
CONCLUSION
........................................................................................................
301 REFERENCES
...............................................................................................................
301 XXII TABLE OF CONTENTS USING NATURAL-LANGUAGE KNOWLEDGE SOURCES IN
SPEECH RECOGNITION ROBERT C. MOORE
......................................................................................................
304 1. INTRODUCTION
......................................................................................................
304 2. ISSUES IN LANGUAGE MODELING FOR SPEECH RECOGNITION
.................................... 305 3. FORMAL MODELS FOR NATURAL
LANGUAGE ..............................................................
307 3.1 FINITE-STATE GRAMMARS
..............................................................................
307 3.2 CONTEXT-FREE GRAMMARS
............................................................................
308 3.3 AUGMENTED CONTEXT-FREE GRAMMARS
........................................................ 309 3.4
EXPRESSIVE POWER OF GRAMMAR FORMALISMS AND THE REQUIREMENTS OF NATURAL
LANGUAGE
......................................................................................
310 4. SEARCH ARCHITECTURES FOR NATURAL-LANGUAGE-BASED LANGUAGE MODELS
............ 312 4.1 WORD LATTICE PARSING
.................................................................................
312 4.2 N -BEST FILTERING OR RESCORING
.................................................................... 312
4.3 DYNAMIC GENERATION OF PARTIAL GRAMMAR NETWORKS
................................. 313 5. COMPILING UNIFICATION GRAMMARS
INTO CONTEXT-FREE GRAMMARS .................... 314 5.1 INSTANTIATING
UNIFICATION GRAMMARS
.......................................................... 314 5.2
REMOVING LEFT RECURSION FROM CONTEXT-FREE GRAMMARS
........................ 316 6. ROBUST NATURAL-LANGUAGE-BASED LANGUAGE
MODELS ........................................ 318 6.1 COMBINING
LINGUISTICS AND STATISTICS IN A LANGUAGE MODEL ..................... 318
6.2 FUHY STATISTICAL NATURAL-LANGUAGE GRAMMARS
......................................... 320 7. SUMMARY
..........................................................................................................
325 REFERENCES
...............................................................................................................
326 HOW MAY I HELP YOU? A.L. GORIN, G. RICCARDI AND J.R. WRIGHT
................................................................. 328 1.
INTRODUCTION
......................................................................................................
328 2. A SPOKEN DIALOG
SYSTEM..................................................................................
329 3. DATABASE
...........................................................................................................
331 4. ALGORITHMS
........................................................................................................
333 4.1 SALIENT FRAGMENT ACQUISITION
.................................................................... 335
4.2 RECOGNIZING FRAGMENTS IN SPEECH
............................................................ 339 4.3
CALL CLASSIFICATION
.....................................................................................
341 5. EXPERIMENT RESULTS
..........................................................................................
343 6. CONCLUSIONS
......................................................................................................
347 REFERENCES
...............................................................................................................
348 INTRODUCTION OF RULES INTO A STOCHASTIC APPROACH FOR LANGUAGE
MODELLING THIERRY SPRIET AND MARC EL-BEZE
............................................................................
350 1. INTRODUCTION
......................................................................................................
350 2. STACK DECODING STRATEGY
..................................................................................
351 2.1 THEALGORITHM
............................................................................................
351 2.2 THE EVALUATION FUNCTION
...........................................................................
351 2.3 PECULIAR ADVANTAGES OF THE ALGORITHM
...................................................... 352 TABLE OF
CONTENTS XXIII 3. RULES
.................................................................................................................
353 3.1 CORRECTIONOFBIASES
....................................................................................
353 3.2 UNDER-REPRESENTED STRUCTURES AND LONG SPAN DEPENDENCIES
................... 353 4. MULTI LEVEL INTERACTIONS
...................................................................................
354 4.1 LINGUISTIC AND SYNTACTIC
............................................................................
354 4.2 PHONOLOGY
.................................................................................................
354 5. CONCLUSION
........................................................................................................
355 REFERENCES
...............................................................................................................
355 HISTORY INTEGRATION INTO SEMANTIC CLASSIFICATION MAURO CETTOLO AND
ANNA CORAZZA
...........................................................................
356 1. INTRODUCTION
......................................................................................................
356 2. CLASSIFIER
...........................................................................................................
357 3. DATA
..................................................................................................................
357 4. DIALOGUE HISTORY INTEGRATION
............................................................................
358 5. DISCUSSION
........................................................................................................
360 REFERENCES
...............................................................................................................
361 MULTILINGUAL SPEECH RECOGNITION E. NOETH AND S. HARBECK AND H.
NIEMANN ................................................................
362 1. INTRODUCTION
......................................................................................................
362 2. ARCHITECTURE OF THE NATIONAL SQEL
DEMONSTRATORS.......................................... 363 3. LANGUAGE
IDENTIFICATION WITH DIFFERENT AMOUNTS OF KNOWLEDGE ABOUT THE TRAINING
DATA
....................................................................................................
364 3.1 A SYSTEM WITH EXPLICIT LANGUAGE IDENTIFICATION
...................................... 365 3.2 A SYSTEM WITH HNPLICIT
LANGUAGE IDENTIFICATION ....................................... 367 3.3
LANGUAGE IDENTIFICATION BASED ON CEPSTRAL FEATURE VECTORS
.................... 369 4. RESULTS
..............................................................................................................
370 5. CONCLUSIONS AND FUTURE WORK
..........................................................................
373 REFERENCES
...............................................................................................................
373 TOWARD ALISP: A PROPOSAL FOR AUTOMATIC LANGUAGE INDEPENDENT SPEECH
PROCESSING . GERARD CHOLLET, JAN C *ERNOCK´ Y, ANDREI CONSTANTINESCU,
SABINE DELIGNE AND FREDERIC BIMBOT
.......................................................................................................
375 1. INTRODUCTION
......................................................................................................
375 2. PRACTICAL BENEFIT OF ALISP
................................................................................
376 3. ISSUES SPECIFIC TO ALISP
...................................................................................
377 3.1 SELECTING FEATURES
......................................................................................
377 3.2 MODELING SPEECH UNITS
...............................................................................
377 3.3 DEFINING A DERIVATION CRITERION
.................................................................. 378
3.4 BUILDING A LEXICON
.....................................................................................
378 4. SOME TOOLS FOR ALISP
......................................................................................
379 4.1 TEMPORAL DECOMPOSITION
..........................................................................
379 XXIV TABLE OF CONTENTS 4.2 THE MULTIGRAM MODEL
................................................................................
380 5. EXPERIMENTS
......................................................................................................
381 5.1 CROSS-LANGUAGE RECOGNITION
.................................................................... 381
5.2 VERY LOW BIT RATE SPEECH CODING
................................................................ 382 5.3
MONO-SPEAKER CONTINUOUS SPEECH RECOGNITION
...................................... 384 6. CONCLUSIONS
......................................................................................................
386 REFERENCES
...............................................................................................................
387 INTERACTIVE TRANSLATION OF CONVERSATIONAL SPEECH ALEX WAIBEL
.............................................................................................................
389 1. INTRODUCTION
......................................................................................................
389 2. BACKGROUND
......................................................................................................
390 2.1 THE PROBLEM OF SPOKEN LANGUAGE TRANSLATION
......................................... 390 2.2 RESEARCH EFFORTS ON
SPEECH TRANSLATION....................................................
391 3. JANUS-II - A CONVERSATIONAL SPEECH TRANSLATOR
............................................. 392 3.1 TASK DOMAINS AND
DATA COLLECTION
........................................................... 392 3.2
SYSTEM DESCRIPTION
...................................................................................
394 3.3 PERFORMANCE EVALUATION
............................................................................
398 4. APPLICATIONS AND FORMS OF DEPLOYMENT
.......................................................... 400 4.1
INTERACTIVE DIALOG TRANSLATION
................................................................... 401
4.2 PORTABLE SPEECH TRANSLATION
DEVICE.......................................................... 402 4.3
PASSIVE SIMULTANEOUS DIALOG TRANSLATION
................................................. 402 REFERENCES
...............................................................................................................
403 MULTIMODAL SPEECH SYSTEMS FRANCOISE D. NEEL AND WOLFGANG M. MINKER
.......................................................... 404 1.
INTRODUCTION
......................................................................................................
404 2. SYSTEM ARCHITECTURE: KNOWLEDGE SOURCES AND CONTROLLERS
............................. 405 2.1 ENVIRONNIENT MODEL
..................................................................................
406 2.2 SYSTEM
MODEL............................................................................................
406 2.3 USER MODEL
................................................................................................
408 2.4 TASK MODEL
................................................................................................
410 2.5 DIALOGUE MODEL
.........................................................................................
411 2.6 MODELS INTERDEPENDENCY
...........................................................................
413 2.7 ROLE OF SPEECH IN MULTIMODAL APPLICATIONS
............................................. 413 3. INFORMATION SPEECH
SYSTEMS
............................................................................
414 3.1 SPONTANEOUS LANGUAGE CHARACTERISTICS
..................................................... 414 3.2 CASE
GRAMMAR FORMALISM USED FOR TASK MODELLING
................................ 416 3.3 DIFFERENT PARSING METHODS
........................................................................
417 3.4 TASK AND DIALOGUE MODEL INTEGRATION
....................................................... 426 4.
CONCLUSION
........................................................................................................
427 REFERENCES
...............................................................................................................
428 TABLE OF CONTENTS XXV MULTIMODAL INTERFACES FOR MULTIMEDIA
INFORMATION AGENTS ALEX WAIBEL AND BERNHARD SUHM AND MINH TUE VO AND JIE
YANG .......................... 431 1. INTRODUCTION
......................................................................................................
431 2. INTERPRETATION OF MULTIMODAL INPUT
.................................................................. 432
2.1 MULTIMODAL COMPONENTS
...........................................................................
432 2.2 JOINT INTERPRETATION
....................................................................................
432 3. MULTIMODAL ERROR CORRECTION
...........................................................................
433 3.1 MULTIMODAL INTERACTIVE ERROR REPAIR
......................................................... 433 3.2 ERROR
REPAIR FOR MULTIMEDIA INFORMATION AGENTS
..................................... 433 3.3 EVALUATING INTERACTIVE
ERROR REPAIR ..........................................................
434 4. MULTIMODAL INFORMATION AGENTS
.......................................................................
434 4.1 INFORMATION
ACCESS....................................................................................
434 4.2 INFORMATION CREATION
.................................................................................
435 4.3 INFORMATION MANIPULATION
.........................................................................
435 4.4 INFORMATION
DISSEMINATION........................................................................
436 4.5 CONTROLLING THE INTERFACE
...........................................................................
436 5. THE QUICKDOC APPLICATION
...............................................................................
437 6. CONCLUSIONS
......................................................................................................
437 REFERENCES
...............................................................................................................
438 INDEX
..............................................................................
..................................... 440
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV012556450 |
classification_rvk | ST 306 ST 330 |
ctrlnum | (OCoLC)468422158 (DE-599)BVBBV012556450 |
dewey-full | 006.454 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.454 |
dewey-search | 006.454 |
dewey-sort | 16.454 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02411nam a2200517 cb4500</leader><controlfield tag="001">BV012556450</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19990802 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990504s1999 gw ad|| |||| 10||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">955262046</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354065478X</subfield><subfield code="9">3-540-65478-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)468422158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012556450</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="1" ind2=" "><subfield code="a">006.454</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 306</subfield><subfield code="0">(DE-625)143654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational models of speech pattern processing</subfield><subfield code="b">[proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997]</subfield><subfield code="c">ed. by Keith Ponting</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 446 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">NATO ASI series : Ser. F, Computer and systems sciences</subfield><subfield code="v">169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reconnaissance automatique de la parole - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traitement automatique de la parole - Congrès</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Spracherkennung</subfield><subfield code="0">(DE-588)4003961-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1997</subfield><subfield code="z">Saint Hélier</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sprachverarbeitung</subfield><subfield code="0">(DE-588)4116579-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Automatische Spracherkennung</subfield><subfield code="0">(DE-588)4003961-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ponting, K. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Advanced Study Institute on Computational Models of Speech Pattern Processing</subfield><subfield code="d">1997</subfield><subfield code="c">Saint Hélier</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)2174168-2</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">NATO ASI series</subfield><subfield code="v">Ser. F, Computer and systems sciences ; 169</subfield><subfield code="w">(DE-604)BV000013052</subfield><subfield code="9">169</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008525962&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008525962</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1997 Saint Hélier gnd-content |
genre_facet | Konferenzschrift 1997 Saint Hélier |
id | DE-604.BV012556450 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:29:37Z |
institution | BVB |
institution_GND | (DE-588)2174168-2 |
isbn | 354065478X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008525962 |
oclc_num | 468422158 |
open_access_boolean | |
owner | DE-12 DE-526 DE-83 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-526 DE-83 DE-355 DE-BY-UBR |
physical | XXX, 446 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer |
record_format | marc |
series | NATO ASI series |
series2 | NATO ASI series : Ser. F, Computer and systems sciences |
spelling | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] ed. by Keith Ponting Berlin [u.a.] Springer 1999 XXX, 446 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier NATO ASI series : Ser. F, Computer and systems sciences 169 Literaturangaben Reconnaissance automatique de la parole - Congrès ram Traitement automatique de la parole - Congrès ram Sprachverarbeitung (DE-588)4116579-2 gnd rswk-swf Automatische Spracherkennung (DE-588)4003961-4 gnd rswk-swf Mustererkennung (DE-588)4040936-3 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1997 Saint Hélier gnd-content Sprachverarbeitung (DE-588)4116579-2 s Mustererkennung (DE-588)4040936-3 s DE-604 Automatische Spracherkennung (DE-588)4003961-4 s Ponting, K. M. Sonstige oth Advanced Study Institute on Computational Models of Speech Pattern Processing 1997 Saint Hélier Sonstige (DE-588)2174168-2 oth NATO ASI series Ser. F, Computer and systems sciences ; 169 (DE-604)BV000013052 169 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008525962&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] NATO ASI series Reconnaissance automatique de la parole - Congrès ram Traitement automatique de la parole - Congrès ram Sprachverarbeitung (DE-588)4116579-2 gnd Automatische Spracherkennung (DE-588)4003961-4 gnd Mustererkennung (DE-588)4040936-3 gnd |
subject_GND | (DE-588)4116579-2 (DE-588)4003961-4 (DE-588)4040936-3 (DE-588)1071861417 |
title | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] |
title_auth | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] |
title_exact_search | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] |
title_full | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] ed. by Keith Ponting |
title_fullStr | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] ed. by Keith Ponting |
title_full_unstemmed | Computational models of speech pattern processing [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] ed. by Keith Ponting |
title_short | Computational models of speech pattern processing |
title_sort | computational models of speech pattern processing proceedings of the nato advanced study institute on computational models of speech pattern processing held in st helier jersey uk july 7 18 1997 |
title_sub | [proceedings of the NATO Advanced Study Institute on Computational Models of Speech Pattern Processing, held in St. Heliér, Jersey, UK, July 7 - 18, 1997] |
topic | Reconnaissance automatique de la parole - Congrès ram Traitement automatique de la parole - Congrès ram Sprachverarbeitung (DE-588)4116579-2 gnd Automatische Spracherkennung (DE-588)4003961-4 gnd Mustererkennung (DE-588)4040936-3 gnd |
topic_facet | Reconnaissance automatique de la parole - Congrès Traitement automatique de la parole - Congrès Sprachverarbeitung Automatische Spracherkennung Mustererkennung Konferenzschrift 1997 Saint Hélier |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008525962&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000013052 |
work_keys_str_mv | AT pontingkm computationalmodelsofspeechpatternprocessingproceedingsofthenatoadvancedstudyinstituteoncomputationalmodelsofspeechpatternprocessingheldinsthelierjerseyukjuly7181997 AT advancedstudyinstituteoncomputationalmodelsofspeechpatternprocessingsainthelier computationalmodelsofspeechpatternprocessingproceedingsofthenatoadvancedstudyinstituteoncomputationalmodelsofspeechpatternprocessingheldinsthelierjerseyukjuly7181997 |