Hydrodynamics and transport for water quality modeling

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martin, James L. (VerfasserIn), MacCutcheon, Steven C. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton [u.a.] Lewis 1999
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV012454672
003 DE-604
005 00000000000000.0
007 t|
008 990315s1999 xx d||| |||| 00||| eng d
020 |a 0873716124  |9 0-87371-612-4 
035 |a (OCoLC)845182122 
035 |a (DE-599)BVBBV012454672 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-83 
050 0 |a TD370 
082 0 |a 627.042 
084 |a WC 5400  |0 (DE-625)148113:  |2 rvk 
084 |a 14  |2 ssgn 
100 1 |a Martin, James L.  |e Verfasser  |4 aut 
245 1 0 |a Hydrodynamics and transport for water quality modeling  |c James L. Martin ; Steven C. McCutcheon 
264 1 |a Boca Raton [u.a.]  |b Lewis  |c 1999 
300 |a 794 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Hydrodynamik - Mathematisches Modell 
650 4 |a Hydromechanik - Mathematisches Modell 
650 4 |a Wassergüte - Mathematisches Modell 
650 4 |a Mathematisches Modell 
650 4 |a Hydraulics  |x Mathematical models 
650 4 |a Hydrodynamics  |x Mathematical models 
650 4 |a Water quality  |x Mathematical models 
650 0 7 |a Wassergüte  |0 (DE-588)4064728-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Hydrodynamik  |0 (DE-588)4026302-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Wassergüte  |0 (DE-588)4064728-6  |D s 
689 0 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Hydrodynamik  |0 (DE-588)4026302-2  |D s 
689 1 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 1 |5 DE-604 
700 1 |a MacCutcheon, Steven C.  |e Verfasser  |4 aut 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008451275&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008451275 

Datensatz im Suchindex

_version_ 1819715972950392832
adam_text HYDRODYNAMICS TRANSPORT FOR WATER QUALITY MODELING JAMES L. MARTIN STEVEN C. MCCUTCHEON WITH CONTRIBUTIONS BY ROBERT W SCHOTTMAN LEWIS PUBLISHERS BOCA RATON LONDON NEW YORK WASHINGTON, D.C. TABLE OF CONTENTS PART I FUNDAMENTALS 1 FUNDAMENTAL RELATIONSHIPS FOR FLOW AND TRANSPORT I. MECHANISTIC VERSUS EMPIRICAL MODELING 7 II. GENERAL PRINCIPLES 8 A. LAWS OF CONSERVATION 8 B. EXTRINSIC VERSUS INTRINSIC PROPERTIES 9 C NET ACCUMULATION: APPLICATION OF THE LAWS OF CONSERVATION 10 D. CONTROL VOLUMES 12 III. PHYSICAL PROPERTIES OF WATER 13 A. DENSITY AND SPECIFIC WEIGHT 13 B. COMPRESSIBILITY 15 C. NEWTONIAN FLUIDS AND MOLECULAR VISCOSITY 16 D. MOLECULAR DIFFUSIVITY 19 IV. INSTANTANEOUS EQUATIONS FOR FLUID FLOW AND TRANSPORT 23 A. FUNDAMENTAL FORM OF THE CONSERVATION EQUATIONS 23 B. INSTANTANEOUS EQUATION FOR CONTINUITY OF WATER 27 C. INSTANTANEOUS EQUATIONS FOR THE CONSERVATION OF MOMENTUM 28 D. INSTANTANEOUS EQUATIONS FOR THE CONSERVATION OF CONSTITUENT MASS OR THERMAL ENERGY 29 V. REYNOLDS TIME-AVERAGED MEAN FLOW AND TRANSPORT EQUATIONS 30 A. TURBULENT MOTION 31 B. STATISTICAL RELATIONSHIPS 33 C. TURBULENCE CLOSURE 38 VI. MODEL COMPLEXITY: SELECTION AND DEVELOPMENT 44 A. MODEL RESOLUTION 47 1. SCALES OF INTEREST 49 2. TIME VARIATION 53 3. SPATIAL DIMENSIONS FOR SOLVING THE GOVERNING EQUATIONS 55 4. METHODS TO SIMULATE THE WATER SURFACE 56 5. TURBULENCE PARAMETERIZATION 58 6. FORCING FUNCTIONS OR SOURCES AND SINKS 60 A. WATER MASS 60 B. MOMENTUM 61 C. CONSTITUENT MASS 62 B. SOLUTION TECHNIQUES 66 1. ANALYTICAL SOLUTIONS 67 2. NUMERICAL SOLUTION TECHNIQUES 67 VII. DATA REQUIREMENTS 74 A. BOUNDARY CONDITIONS 74 B. INITIAL CONDITIONS 75 C. DATA FOR MODEL APPLICATION AND EVALUATION 77 1. STATISTICAL TESTS OF PAIRED OBSERVATIONS AND SIMULATIONS 80 2. SENSITIVITY ANALYSIS 87 3. ERROR ANALYSIS 88 D. DATA FOR EVALUATION OF ENVIRONMENTAL CONTROL 88 VIII. DEFINITIONS 89 IX. DIMENSIONLESS NUMBERS 90 MEASUREMENT AND ANALYSIS OF FLOW I. INTRODUCTION 93 II. MEASUREMENT OF VELOCITY AND FLOW 94 A. FLOAT METHODS 94 B. CURRENT METERS 97 1. MECHANICAL CURRENT METERS 98 2. ACOUSTIC CURRENT MEASUREMENT 100 3. ELECTROMAGNETIC CURRENT MEASUREMENT 103 4. DEPLOYMENT OF CURRENT METERS 105 C. FLOW MEASUREMENT AT CONTROL STRUCTURES 107 D. REMOTE SENSING 109 III. MEASUREMENT OF STAGE 109 IV. COMPUTATION OF DISCHARGE ILL V. TRACER STUDIES 114 A. MEASUREMENT OF FLUORESCENT DYES 115 B. PROPERTIES OF FLUORESCENT DYES 118 1. TEMPERATURE EFFECTS 118 2. BACKGROUND INTERFERENCE 119 3. SORPTION 119 4. PH EFFECTS 120 5. PHOTODEGRADATION 120 6. CHEMICAL REACTIONS AND QUENCHING 120 7. DENSITY EFFECTS 121 8. TOXICITY 121 C. TYPES OF DYE STUDIES 121 1. INSTANTANEOUS RELEASE 121 2. CONTINUOUS RELEASE 124 D. PLANNING DYE STUDIES 131 1. ESTIMATING MEAN VELOCITIES 131 2. MIXING CONSIDERATIONS 131 3. ESTIMATING THE QUANTITY OF DYE RELEASES 132 4. DETERMINING LOCATIONS OF SAMPLING STATIONS 132 VI. ESTIMATING DESIGN FLOWS 133 A. DESIGN CONDITIONS FOR DYNAMIC FLOWS 135 B. DESIGN CONDITIONS FOR STEADY FLOWS 135 1. EXTREME-VALUE-BASED DESIGN FLOWS 138 A. DISTRIBUTION-FREE METHOD 138 B. KNOWN OR ESTIMATED PROBABILITY DISTRIBUTION 143 2. BIOLOGICALLY BASED DESIGN FLOWS 147 REFERENCES 151 SYMBOLS USED IN PART I 159 PROBLEMS 171 APPENDIXES LA, PHYSICAL PROPERTIES OF WATER 180 I.B UNIT CONVERSION FACTORS 182 I.C VALUES OF FREQUENCY FACTOR K FOR USE IN THE LOG PEARSON TYPE III DISTRIBUTION FOR LOW-FLOW ANALYSES 191 I.D VALUES OF FREQUENCY FACTOR K FOR USE IN THE LOG PEARSON TYPE III DISTRIBUTION FOR HIGH-FLOW ANALYSES 192 I.E STANDARD VARIANT X V ASSOCIATED WITH TYPICAL RETURN INTERVALS 193 PART II RIVERS AND STREAMS 3 FLOW MODELS FOR RIVERS AND STREAMS I. INTRODUCTION 199 II. FLOW MODEL COMPLEXITY 200 A. SPATIAL AND TEMPORAL RESOLUTION 201 B. COMPLEXITY OF GOVERNING EQUATIONS 202 III. DATA REQUIREMENTS 204 A. BOUNDARY CONDITIONS 205 B. CHANNEL GEOMETRY 206 C BOTTOM ROUGHNESS 209 D. MODEL CALIBRATION AND EVALUATION 210 IV. ESTIMATING MIXING IN STREAMS AND RIVERS 211 A. METHODS BASED ON SHEAR STRESSES 213 B. METHODS BASED ON TRACER STUDIES 215 C. ESTIMATING MIXING LENGTHS 219 NON-HYDRAULIC METHODS FOR FLOW ESTIMATION I. FLOW RELATIONSHIPS 221 II. HYDROLOGIC ROUTING METHODS 222 A. EMPIRICAL TECHNIQUES 222 B. HYDROGRAPHIC THEORY 223 C. HYDROGRAPHIC RELATIONSHIPS 226 D. METHODS BASED ON CONTINUITY 229 HYDRAULIC METHODS FOR STEADY FLOWS I. STEADY, UNIFORM FLOWS . . 237 A. THE CHEZY EQUATION 238 B. THE MANNING EQUATION 239 C. SIMULATING FRICTIONAL RESISTANCE USING THE MANNING EQUATION 246 II. HYDRAULIC METHODS FOR STEADY, NONUNIFORM FLOWS 248 A. BERNOULLI ENERGY EQUATION MODIFIED FOR FRICTION LOSSES 248 B. CLASSIFICATION OF FLOW REGIMES 249 1. NORMAL AND CRITICAL FLOW CONDITIONS 249 2. FROUDE NUMBER 252 3. HYDRAULIC JUMP 253 4. CLASSIFICATION OF WATER SURFACE PROFILES 254 C. ENERGY LOSSES AND MOMENTUM CORRECTIONS 255 1. FRICTION LOSSES IN STEADY, NONUNIFORM FLOW 255 2. MINOR LOSSES 256 3. KINETIC ENERGY CORRECTIONS 257 D. APPLICATION OF NONUNIFORM FLOW CONCEPTS 258 1. THE STEP METHOD 258 2. ITERATIVE SOLUTION 261 HYDRAULIC METHODS FOR UNSTEADY FLOWS I. INTRODUCTION 267 II. SOLUTION TECHNIQUES 268 A. METHOD OF CHARACTERISTICS 268 B. FINITE-DIFFERENCE METHODS 269 C. FINITE-ELEMENT METHODS 274 D. NUMERICAL PROPERTIES 274 E. BOUNDARY AND INITIAL CONDITIONS 276 III. UNSTEADY-FLOW METHODS 277 IV. KINEMATIC-WAVE MODEL 278 A. EXACT SOLUTION 280 B. NUMERICAL SOLUTION: BACKWARD FINITE-DIFFERENCE APPROACH 283 SOLUTIONS OF COMPLETE UNSTEADY FLOW MODELS I. EXPLICIT SOLUTION OF A LINK-NODE MODEL 289 A. DESCRIPTION OF THE METHOD 289 B. SOLUTION TECHNIQUE 291 C. EXAMPLE APPLICATIONS 293 D. LINKAGE WITH WATER QUALITY MODELS 299 II. IMPLICIT SOLUTION USING THE FOUR-POINT METHOD 301 A. NUMERICAL SCHEME 301 B. SOLUTION TECHNIQUE 304 C. EXAMPLES OF IMPLICIT MODELS 308 D. LINKAGE WITH WATER QUALITY MODELS 310 REFERENCES 315 SYMBOLS USED IN PART II 319 PROBLEMS 325 PART HI LAKES AND RESERVOIRS 8 STRATIFICATION AND HEAT TRANSFER IN LAKES AND RESERVOIRS I. INTRODUCTION TO LAKES AND RESERVOIRS 335 II. ORIGIN AND CHARACTERISTICS OF LAKES AND RESERVOIRS 336 A. ORIGIN OF LAKES 336 B. SIZE AND NUMBER 337 C. WATER USE AND RESERVOIR PURPOSE 338 D. IMPORTANT LENTIC ZONES AND SHORELINE CONDITIONS 342 E. HYDRAULIC RETENTION TIME 343 III. STRATIFICATION IN LAKES AND RESERVOIRS 343 A. STRATIFICATION CYCLE 344 B. CLASSIFICATION OF LAKES AND RESERVOIRS BASED ON STRATIFICATION 347 C. STRATIFICATION POTENTIAL 348 IV. TEMPERATURE SIMULATION 349 A. FULL HEAT BALANCE 350 1. SHORT-WAVE RADIATION 350 2. LONG-WAVE RADIATION 360 3. BACK RADIATION FROM LAKES AND RESERVOIRS 361 4. EVAPORATION 362 5. CONDUCTION AND CONVECTION 365 B. BEER S LAW AND THE SOLAR RADIATION PENETRATION 367 C. EQUILIBRIUM TEMPERATURE METHOD 370 1. USE OF EQUILIBRIUM TEMPERATURE TO SOLVE FOR THE HEAT FLUX 372 2. COEFFICIENT OF HEAT EXCHANGE 374 3. OTHER METHODS 376 D. DATA REQUIREMENTS 377 V. ICE FORMATION AND COVER 379 A. ICE FORMATION 381 B. LIGHT PENETRATION THROUGH ICE AND SNOW 381 C. THICKENING OF THE ICE COVER 382 D. LAKE ICE DECAY 383 MIXING IN LAKES AND RESERVOIRS I. INTRODUCTION 385 II. INFLOW MIXING PROCESSES 387 A. CHARACTERISTICS OF INFLOW MIXING 388 B. ANALYSIS OF INFLOWS 390 1. PLUNGE OR SEPARATION POINT 391 2. THICKNESS AND WIDTH OF OVERFLOW 396 3. UNDERFLOW MIXING 396 4. INTERFLOWS 399 III. OUTFLOW MIXING PROCESSES 403 A. CHARACTERISTICS OF OUTFLOW MIXING PROCESSES 403 B. ANALYSIS OF OUTFLOW PROCESSES 404 IV. MIXING BY WIND, WAVES, CONVECTIVE COOLING, AND CORIOLIS FORCES 412 A. PROGRESSIVE SURFACE WAVES 413 B. LANGMUIR CIRCULATION 417 C. CONVECTIVE MIXING 418 D. INTERNAL WAVES, SEICHES AND UPWELLING 418 E. EARTH S ROTATION*THE CORIOLIS FORCE 426 V. RESERVOIR MANAGEMENT AND MIXING PROCESSES 427 10 WATER BALANCES AND MULTIDIMENSIONAL MODELS I. INTRODUCTION 431 II. WATER BALANCE FOR LAKES AND RESERVOIRS 432 A. COMPONENTS OF THE WATER BALANCE 433 1. STORAGE 433 2. INFLOW AND OUTFLOW MEASUREMENTS 436 3. DIRECT PRECIPITATION ONTO THE LAKE SURFACE 437 4. EVAPORATION 438 5. GROUNDWATER SEEPAGE AND INFILTRATION 444 B. RESERVOIR ROUTING METHODS 446 III. ZERO-DIMENSIONAL OR BOX MODELS OF LAKE AND RESERVOIR QUALITY 449 IV. ONE-DIMENSIONAL, LONGITUDINAL MODELS OF LAKES AND RESERVOIRS 453 V. ONE-DIMENSIONAL, VERTICAL MODELS OF LAKES AND RESERVOIRS 455 A. MIXED LAYER MODELS 456 B. VERTICAL TURBULENT DIFFUSION MODELS 464 1. EMPIRICAL EXPRESSIONS 464 2. DYE OR TRACER STUDIES TO DETERMINE VERTICAL MIXING 471 VI. TWO-DIMENSIONAL (LATERALLY AVERAGED) MODELS 474 A. BOX MODEL APPROACH 475 B. HYDRODYNAMIC AND MASS TRANSPORT MODELS 480 VII. TWO-DIMENSIONAL DEPTH AVERAGED MODELS 486 VIII. THREE-DIMENSIONAL MODELS 488 REFERENCES ... 491 SYMBOLS USED IN PART III 501 PROBLEMS .-. 507 PART IV ESTUARIES 11 INTRODUCTION TO ESTUARIES I. INTRODUCTION 527 II. GENERAL CHARACTERISTICS OF ESTUARIES 527 A. CHEMICAL CHARACTERISTICS 528 B. DENSITY 529 C. TIDES AND THE SALT-WEDGE ESTUARY 530 III. CLASSIFICATION SCHEMES 534 A. GEOMORPHOLOGY 534 B. DEGREE OF STRATIFICATION 535 12 FACTORS AFFECTING TRANSPORT AND MIXING IN ESTUARIES I. INTRODUCTION 543 II. TIDES 543 A. TIDAL AMPLITUDES 544 B. TIDAL CURRENTS 553 III. THE CORIOLIS FORCE 556 IV. FRESHWATER INFLOW 558 V. METEOROLOGICAL EFFECTS 559 VI. BATHYMETRY 561 VII. MODEL COMPLEXITY 562 A. SPATIAL AND TEMPORAL RESOLUTION 563 1. SPATIAL RESOLUTION 564 2. TEMPORAL RESOLUTION 566 B. COMPLEXITY OF GOVERNING EQUATIONS 568 13 TURBULENT MIXING AND DISPERSION IN ESTUARIES I. EDDY VISCOSITY AND EDDY DIFFUSIVITY 569 A. FORMULATION OF COEFFICIENTS 570 B. THE CLOSURE PROBLEM 572 1. ZERO-EQUATION CLOSURE 572 2. ONE-EQUATION CLOSURE 573 3. TWO-EQUATION CLOSURE 573 4. TURBULENT STRESS AND FLUX EQUATION CLOSURE 574 II. DISPERSION IN ESTUARIES.: 575 III. ESTIMATION OF MIXING TERMS 576 A. EDDY VISCOSITY AND EDDY DIFFUSIVITY 576 B. DISPERSION 586 14 TIDALLY AVERAGED ESTUARINE MODELS I. INTRODUCTION 593 II. FRACTION OF FRESHWATER METHOD 599 III. MODIFIED TIDAL PRISM METHOD 601 IV. PRITCHARD S METHOD 604 V. LUNG AND O CONNOR S METHOD 609 VI. COMPUTING TIDAL TRANSPORT FROM MEASURED OR PREDICTED VELOCITIES 616 A. COMPUTING TIDALLY AVERAGED ADVECTION AND DISPERSION 616 1. COMPUTING TIDALLY AVERAGED ADVECTION 618 2. COMPUTING TIDALLY AVERAGED DISPERSION 619 3. NUMERICAL DIFFUSION 628 B. SPATIAL AVERAGING OF FINE SCALE INTRATIDAL SIMULATIONS 628 C. THE LAGRANGIAN TRANSPORT EQUATION 629 D. COMPUTING THE STOKES DRIFT 634 E. A FINAL NOTE ON TIDAL AVERAGING 640 15 DYNAMIC MODELING OF ESTUARIES I. INTRODUCTION 643 II. FACTORS THAT DISTINGUISH MODELING APPROACHES 645 A. FORCES AND BOUNDARY CONDITIONS 646 1. RIVERINE BOUNDARY CONDITIONS 646 2. OPEN WATER BOUNDARY CONDITIONS 646 3. FORCES DUE TO THE CORIOLIS EFFECT, ATMOSPHERIC PRESSURE, BAROTROPIC SETUP, AND BAROCLINIC PRESSURE 647 4. WATER SURFACE CONDITIONS 649 5. BOTTOM BOUNDARY CONDITIONS 650 6. SHORELINE CONDITIONS 653 B. DIMENSIONALITY 655 C. GRID STRUCTURE 655 1. HORIZONTAL FINITE DIFFERENCE GRIDS 656 A. RECTANGULAR GRIDS WITH FIXED-GRID SPACING 656 B. STRETCHED RECTANGULAR GRIDS 656 C. CURVILINEAR BOUNDARY-FITTED COORDINATE SYSTEMS 658 D. ADAPTIVE GRIDS 662 2. VERTICAL COORDINATE SYSTEMS 663 A. CARTESIAN VERTICAL COORDINATE 663 B. STRETCHED GRID 664 C. ISOPYCNIC COORDINATE SYSTEM 665 3. FINITE ELEMENT GRIDS 666 D. NUMERICAL SOLUTION SCHEME 666 III. ONE-DIMENSIONAL MODELS OF ESTUARIES 668 A. EXAMPLES OF AVAILABLE MODELS 671 1. BRANCH-NETWORK FLOW MODEL 671 2. CE-QUAL-RIV1 672 3. DYNAMIC ESTUARY MODEL (DEM) 672 4. EXPLORE-1 673 5. MIT TRANSIENT WATER QUALITY NETWORK MODEL 673 B. CASE STUDY 674 IV. TWO-DIMENSIONAL (HORIZONTAL PLANE) MODELS 678 A. EXAMPLES OF AVAILABLE MODELS 680 1. TABS-MD AND RMA2-WES 681 2. WIFM-SAL 682 3. HSCTM-2D 683 4. FESWMS-2DH 683 5. TIDAL, RESIDUAL, INTERTIDAL MUDFLAT MODEL 684 6. SIMSYS2D OR SWIFT2D 685 7. CAFEX 686 8. H.S. CHEN S MODEL 687 9. FETRA, SEDIMENT-CONTAMINANT TRANSPORT MODEL 687 10. NELEUS 688 11. SEDZL 688 12. OTHER MODELS 689 B. CASE STUDY 689 V. TWO-DIMENSIONAL (VERTICAL PLANE) MODELS 690 A. EXAMPLES OF AVAILABLE MODELS 694 1. CE-QUAL-W2 694 2. BLUMBERG S MODEL 695 B. CASE STUDY 695 VI. THREE-DIMENSIONAL MODELS 701 A. EXAMPLES OF AVAILABLE MODELS 709 1. CH3D/CH3D-WES 709 2. EHSM3D 709 3. JOHN PAUL S HYDRODYNAMIC MODEL 709 4. ECOM-3D/POM 709 5. MODEL FOR ESTUARINE AND COASTAL CIRCULATION AND ASSESSMENT (MECCA) 710 6. EFDC/HEM3D 710 7. HOTDIM 711 8. RMAMODELS 711 9. TEMPEST 711 B. CASE STUDY 711 VII. COUPLING FLOW AND WATER QUALITY MODELS 718 A. DIRECTLY LINKED MODELS 718 B. INDIRECT LINKAGE 719 REFERENCES 721 SYMBOLS USED IN PART IV 747 PROBLEMS 763 APPENDIXES IV.A. NODE FACTORS () AT THE MIDDLE OF EACH CALENDAR YEAR (1990-2029) 772 IV.B. EQUILIBRIUM ARGUMENT (V O + OC 0 ) FOR THE GREENWICH MERIDIAN AT THE BEGINNING OF EACH CALENDAR YEAR (1990-2029) 776 INDEX 781
any_adam_object 1
author Martin, James L.
MacCutcheon, Steven C.
author_facet Martin, James L.
MacCutcheon, Steven C.
author_role aut
aut
author_sort Martin, James L.
author_variant j l m jl jlm
s c m sc scm
building Verbundindex
bvnumber BV012454672
callnumber-first T - Technology
callnumber-label TD370
callnumber-raw TD370
callnumber-search TD370
callnumber-sort TD 3370
callnumber-subject TD - Environmental Technology
classification_rvk WC 5400
ctrlnum (OCoLC)845182122
(DE-599)BVBBV012454672
dewey-full 627.042
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 627 - Hydraulic engineering
dewey-raw 627.042
dewey-search 627.042
dewey-sort 3627.042
dewey-tens 620 - Engineering and allied operations
discipline Biologie
Bauingenieurwesen
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01983nam a2200517 c 4500</leader><controlfield tag="001">BV012454672</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">990315s1999 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0873716124</subfield><subfield code="9">0-87371-612-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845182122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012454672</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD370</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">627.042</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 5400</subfield><subfield code="0">(DE-625)148113:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martin, James L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrodynamics and transport for water quality modeling</subfield><subfield code="c">James L. Martin ; Steven C. McCutcheon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Lewis</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">794 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamik - Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydromechanik - Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wassergüte - Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water quality</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wassergüte</subfield><subfield code="0">(DE-588)4064728-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wassergüte</subfield><subfield code="0">(DE-588)4064728-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">MacCutcheon, Steven C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008451275&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008451275</subfield></datafield></record></collection>
id DE-604.BV012454672
illustrated Illustrated
indexdate 2024-12-23T15:02:55Z
institution BVB
isbn 0873716124
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008451275
oclc_num 845182122
open_access_boolean
owner DE-703
DE-83
owner_facet DE-703
DE-83
physical 794 S. graph. Darst.
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Lewis
record_format marc
spellingShingle Martin, James L.
MacCutcheon, Steven C.
Hydrodynamics and transport for water quality modeling
Hydrodynamik - Mathematisches Modell
Hydromechanik - Mathematisches Modell
Wassergüte - Mathematisches Modell
Mathematisches Modell
Hydraulics Mathematical models
Hydrodynamics Mathematical models
Water quality Mathematical models
Wassergüte (DE-588)4064728-6 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Hydrodynamik (DE-588)4026302-2 gnd
subject_GND (DE-588)4064728-6
(DE-588)4114528-8
(DE-588)4026302-2
title Hydrodynamics and transport for water quality modeling
title_auth Hydrodynamics and transport for water quality modeling
title_exact_search Hydrodynamics and transport for water quality modeling
title_full Hydrodynamics and transport for water quality modeling James L. Martin ; Steven C. McCutcheon
title_fullStr Hydrodynamics and transport for water quality modeling James L. Martin ; Steven C. McCutcheon
title_full_unstemmed Hydrodynamics and transport for water quality modeling James L. Martin ; Steven C. McCutcheon
title_short Hydrodynamics and transport for water quality modeling
title_sort hydrodynamics and transport for water quality modeling
topic Hydrodynamik - Mathematisches Modell
Hydromechanik - Mathematisches Modell
Wassergüte - Mathematisches Modell
Mathematisches Modell
Hydraulics Mathematical models
Hydrodynamics Mathematical models
Water quality Mathematical models
Wassergüte (DE-588)4064728-6 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
Hydrodynamik (DE-588)4026302-2 gnd
topic_facet Hydrodynamik - Mathematisches Modell
Hydromechanik - Mathematisches Modell
Wassergüte - Mathematisches Modell
Mathematisches Modell
Hydraulics Mathematical models
Hydrodynamics Mathematical models
Water quality Mathematical models
Wassergüte
Hydrodynamik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008451275&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT martinjamesl hydrodynamicsandtransportforwaterqualitymodeling
AT maccutcheonstevenc hydrodynamicsandtransportforwaterqualitymodeling