Hydrodynamics and transport for water quality modeling
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Lewis
1999
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012454672 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 990315s1999 xx d||| |||| 00||| eng d | ||
020 | |a 0873716124 |9 0-87371-612-4 | ||
035 | |a (OCoLC)845182122 | ||
035 | |a (DE-599)BVBBV012454672 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a TD370 | |
082 | 0 | |a 627.042 | |
084 | |a WC 5400 |0 (DE-625)148113: |2 rvk | ||
084 | |a 14 |2 ssgn | ||
100 | 1 | |a Martin, James L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hydrodynamics and transport for water quality modeling |c James L. Martin ; Steven C. McCutcheon |
264 | 1 | |a Boca Raton [u.a.] |b Lewis |c 1999 | |
300 | |a 794 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Hydrodynamik - Mathematisches Modell | |
650 | 4 | |a Hydromechanik - Mathematisches Modell | |
650 | 4 | |a Wassergüte - Mathematisches Modell | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Hydraulics |x Mathematical models | |
650 | 4 | |a Hydrodynamics |x Mathematical models | |
650 | 4 | |a Water quality |x Mathematical models | |
650 | 0 | 7 | |a Wassergüte |0 (DE-588)4064728-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wassergüte |0 (DE-588)4064728-6 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a MacCutcheon, Steven C. |e Verfasser |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008451275&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-008451275 |
Datensatz im Suchindex
_version_ | 1819715972950392832 |
---|---|
adam_text | HYDRODYNAMICS TRANSPORT FOR WATER QUALITY MODELING JAMES L. MARTIN
STEVEN C. MCCUTCHEON WITH CONTRIBUTIONS BY ROBERT W SCHOTTMAN LEWIS
PUBLISHERS BOCA RATON LONDON NEW YORK WASHINGTON, D.C. TABLE OF CONTENTS
PART I FUNDAMENTALS 1 FUNDAMENTAL RELATIONSHIPS FOR FLOW AND TRANSPORT
I. MECHANISTIC VERSUS EMPIRICAL MODELING 7 II. GENERAL PRINCIPLES 8 A.
LAWS OF CONSERVATION 8 B. EXTRINSIC VERSUS INTRINSIC PROPERTIES 9 C NET
ACCUMULATION: APPLICATION OF THE LAWS OF CONSERVATION 10 D. CONTROL
VOLUMES 12 III. PHYSICAL PROPERTIES OF WATER 13 A. DENSITY AND SPECIFIC
WEIGHT 13 B. COMPRESSIBILITY 15 C. NEWTONIAN FLUIDS AND MOLECULAR
VISCOSITY 16 D. MOLECULAR DIFFUSIVITY 19 IV. INSTANTANEOUS EQUATIONS FOR
FLUID FLOW AND TRANSPORT 23 A. FUNDAMENTAL FORM OF THE CONSERVATION
EQUATIONS 23 B. INSTANTANEOUS EQUATION FOR CONTINUITY OF WATER 27 C.
INSTANTANEOUS EQUATIONS FOR THE CONSERVATION OF MOMENTUM 28 D.
INSTANTANEOUS EQUATIONS FOR THE CONSERVATION OF CONSTITUENT MASS OR
THERMAL ENERGY 29 V. REYNOLDS TIME-AVERAGED MEAN FLOW AND TRANSPORT
EQUATIONS 30 A. TURBULENT MOTION 31 B. STATISTICAL RELATIONSHIPS 33 C.
TURBULENCE CLOSURE 38 VI. MODEL COMPLEXITY: SELECTION AND DEVELOPMENT 44
A. MODEL RESOLUTION 47 1. SCALES OF INTEREST 49 2. TIME VARIATION 53 3.
SPATIAL DIMENSIONS FOR SOLVING THE GOVERNING EQUATIONS 55 4. METHODS TO
SIMULATE THE WATER SURFACE 56 5. TURBULENCE PARAMETERIZATION 58 6.
FORCING FUNCTIONS OR SOURCES AND SINKS 60 A. WATER MASS 60 B. MOMENTUM
61 C. CONSTITUENT MASS 62 B. SOLUTION TECHNIQUES 66 1. ANALYTICAL
SOLUTIONS 67 2. NUMERICAL SOLUTION TECHNIQUES 67 VII. DATA REQUIREMENTS
74 A. BOUNDARY CONDITIONS 74 B. INITIAL CONDITIONS 75 C. DATA FOR MODEL
APPLICATION AND EVALUATION 77 1. STATISTICAL TESTS OF PAIRED
OBSERVATIONS AND SIMULATIONS 80 2. SENSITIVITY ANALYSIS 87 3. ERROR
ANALYSIS 88 D. DATA FOR EVALUATION OF ENVIRONMENTAL CONTROL 88 VIII.
DEFINITIONS 89 IX. DIMENSIONLESS NUMBERS 90 MEASUREMENT AND ANALYSIS OF
FLOW I. INTRODUCTION 93 II. MEASUREMENT OF VELOCITY AND FLOW 94 A. FLOAT
METHODS 94 B. CURRENT METERS 97 1. MECHANICAL CURRENT METERS 98 2.
ACOUSTIC CURRENT MEASUREMENT 100 3. ELECTROMAGNETIC CURRENT MEASUREMENT
103 4. DEPLOYMENT OF CURRENT METERS 105 C. FLOW MEASUREMENT AT CONTROL
STRUCTURES 107 D. REMOTE SENSING 109 III. MEASUREMENT OF STAGE 109 IV.
COMPUTATION OF DISCHARGE ILL V. TRACER STUDIES 114 A. MEASUREMENT OF
FLUORESCENT DYES 115 B. PROPERTIES OF FLUORESCENT DYES 118 1.
TEMPERATURE EFFECTS 118 2. BACKGROUND INTERFERENCE 119 3. SORPTION 119
4. PH EFFECTS 120 5. PHOTODEGRADATION 120 6. CHEMICAL REACTIONS AND
QUENCHING 120 7. DENSITY EFFECTS 121 8. TOXICITY 121 C. TYPES OF DYE
STUDIES 121 1. INSTANTANEOUS RELEASE 121 2. CONTINUOUS RELEASE 124 D.
PLANNING DYE STUDIES 131 1. ESTIMATING MEAN VELOCITIES 131 2. MIXING
CONSIDERATIONS 131 3. ESTIMATING THE QUANTITY OF DYE RELEASES 132 4.
DETERMINING LOCATIONS OF SAMPLING STATIONS 132 VI. ESTIMATING DESIGN
FLOWS 133 A. DESIGN CONDITIONS FOR DYNAMIC FLOWS 135 B. DESIGN
CONDITIONS FOR STEADY FLOWS 135 1. EXTREME-VALUE-BASED DESIGN FLOWS 138
A. DISTRIBUTION-FREE METHOD 138 B. KNOWN OR ESTIMATED PROBABILITY
DISTRIBUTION 143 2. BIOLOGICALLY BASED DESIGN FLOWS 147 REFERENCES 151
SYMBOLS USED IN PART I 159 PROBLEMS 171 APPENDIXES LA, PHYSICAL
PROPERTIES OF WATER 180 I.B UNIT CONVERSION FACTORS 182 I.C VALUES OF
FREQUENCY FACTOR K FOR USE IN THE LOG PEARSON TYPE III DISTRIBUTION FOR
LOW-FLOW ANALYSES 191 I.D VALUES OF FREQUENCY FACTOR K FOR USE IN THE
LOG PEARSON TYPE III DISTRIBUTION FOR HIGH-FLOW ANALYSES 192 I.E
STANDARD VARIANT X V ASSOCIATED WITH TYPICAL RETURN INTERVALS 193 PART
II RIVERS AND STREAMS 3 FLOW MODELS FOR RIVERS AND STREAMS I.
INTRODUCTION 199 II. FLOW MODEL COMPLEXITY 200 A. SPATIAL AND TEMPORAL
RESOLUTION 201 B. COMPLEXITY OF GOVERNING EQUATIONS 202 III. DATA
REQUIREMENTS 204 A. BOUNDARY CONDITIONS 205 B. CHANNEL GEOMETRY 206 C
BOTTOM ROUGHNESS 209 D. MODEL CALIBRATION AND EVALUATION 210 IV.
ESTIMATING MIXING IN STREAMS AND RIVERS 211 A. METHODS BASED ON SHEAR
STRESSES 213 B. METHODS BASED ON TRACER STUDIES 215 C. ESTIMATING MIXING
LENGTHS 219 NON-HYDRAULIC METHODS FOR FLOW ESTIMATION I. FLOW
RELATIONSHIPS 221 II. HYDROLOGIC ROUTING METHODS 222 A. EMPIRICAL
TECHNIQUES 222 B. HYDROGRAPHIC THEORY 223 C. HYDROGRAPHIC RELATIONSHIPS
226 D. METHODS BASED ON CONTINUITY 229 HYDRAULIC METHODS FOR STEADY
FLOWS I. STEADY, UNIFORM FLOWS . . 237 A. THE CHEZY EQUATION 238 B. THE
MANNING EQUATION 239 C. SIMULATING FRICTIONAL RESISTANCE USING THE
MANNING EQUATION 246 II. HYDRAULIC METHODS FOR STEADY, NONUNIFORM FLOWS
248 A. BERNOULLI ENERGY EQUATION MODIFIED FOR FRICTION LOSSES 248 B.
CLASSIFICATION OF FLOW REGIMES 249 1. NORMAL AND CRITICAL FLOW
CONDITIONS 249 2. FROUDE NUMBER 252 3. HYDRAULIC JUMP 253 4.
CLASSIFICATION OF WATER SURFACE PROFILES 254 C. ENERGY LOSSES AND
MOMENTUM CORRECTIONS 255 1. FRICTION LOSSES IN STEADY, NONUNIFORM FLOW
255 2. MINOR LOSSES 256 3. KINETIC ENERGY CORRECTIONS 257 D. APPLICATION
OF NONUNIFORM FLOW CONCEPTS 258 1. THE STEP METHOD 258 2. ITERATIVE
SOLUTION 261 HYDRAULIC METHODS FOR UNSTEADY FLOWS I. INTRODUCTION 267
II. SOLUTION TECHNIQUES 268 A. METHOD OF CHARACTERISTICS 268 B.
FINITE-DIFFERENCE METHODS 269 C. FINITE-ELEMENT METHODS 274 D. NUMERICAL
PROPERTIES 274 E. BOUNDARY AND INITIAL CONDITIONS 276 III. UNSTEADY-FLOW
METHODS 277 IV. KINEMATIC-WAVE MODEL 278 A. EXACT SOLUTION 280 B.
NUMERICAL SOLUTION: BACKWARD FINITE-DIFFERENCE APPROACH 283 SOLUTIONS OF
COMPLETE UNSTEADY FLOW MODELS I. EXPLICIT SOLUTION OF A LINK-NODE MODEL
289 A. DESCRIPTION OF THE METHOD 289 B. SOLUTION TECHNIQUE 291 C.
EXAMPLE APPLICATIONS 293 D. LINKAGE WITH WATER QUALITY MODELS 299 II.
IMPLICIT SOLUTION USING THE FOUR-POINT METHOD 301 A. NUMERICAL SCHEME
301 B. SOLUTION TECHNIQUE 304 C. EXAMPLES OF IMPLICIT MODELS 308 D.
LINKAGE WITH WATER QUALITY MODELS 310 REFERENCES 315 SYMBOLS USED IN
PART II 319 PROBLEMS 325 PART HI LAKES AND RESERVOIRS 8 STRATIFICATION
AND HEAT TRANSFER IN LAKES AND RESERVOIRS I. INTRODUCTION TO LAKES AND
RESERVOIRS 335 II. ORIGIN AND CHARACTERISTICS OF LAKES AND RESERVOIRS
336 A. ORIGIN OF LAKES 336 B. SIZE AND NUMBER 337 C. WATER USE AND
RESERVOIR PURPOSE 338 D. IMPORTANT LENTIC ZONES AND SHORELINE CONDITIONS
342 E. HYDRAULIC RETENTION TIME 343 III. STRATIFICATION IN LAKES AND
RESERVOIRS 343 A. STRATIFICATION CYCLE 344 B. CLASSIFICATION OF LAKES
AND RESERVOIRS BASED ON STRATIFICATION 347 C. STRATIFICATION POTENTIAL
348 IV. TEMPERATURE SIMULATION 349 A. FULL HEAT BALANCE 350 1.
SHORT-WAVE RADIATION 350 2. LONG-WAVE RADIATION 360 3. BACK RADIATION
FROM LAKES AND RESERVOIRS 361 4. EVAPORATION 362 5. CONDUCTION AND
CONVECTION 365 B. BEER S LAW AND THE SOLAR RADIATION PENETRATION 367 C.
EQUILIBRIUM TEMPERATURE METHOD 370 1. USE OF EQUILIBRIUM TEMPERATURE TO
SOLVE FOR THE HEAT FLUX 372 2. COEFFICIENT OF HEAT EXCHANGE 374 3. OTHER
METHODS 376 D. DATA REQUIREMENTS 377 V. ICE FORMATION AND COVER 379 A.
ICE FORMATION 381 B. LIGHT PENETRATION THROUGH ICE AND SNOW 381 C.
THICKENING OF THE ICE COVER 382 D. LAKE ICE DECAY 383 MIXING IN LAKES
AND RESERVOIRS I. INTRODUCTION 385 II. INFLOW MIXING PROCESSES 387 A.
CHARACTERISTICS OF INFLOW MIXING 388 B. ANALYSIS OF INFLOWS 390 1.
PLUNGE OR SEPARATION POINT 391 2. THICKNESS AND WIDTH OF OVERFLOW 396 3.
UNDERFLOW MIXING 396 4. INTERFLOWS 399 III. OUTFLOW MIXING PROCESSES 403
A. CHARACTERISTICS OF OUTFLOW MIXING PROCESSES 403 B. ANALYSIS OF
OUTFLOW PROCESSES 404 IV. MIXING BY WIND, WAVES, CONVECTIVE COOLING, AND
CORIOLIS FORCES 412 A. PROGRESSIVE SURFACE WAVES 413 B. LANGMUIR
CIRCULATION 417 C. CONVECTIVE MIXING 418 D. INTERNAL WAVES, SEICHES AND
UPWELLING 418 E. EARTH S ROTATION*THE CORIOLIS FORCE 426 V. RESERVOIR
MANAGEMENT AND MIXING PROCESSES 427 10 WATER BALANCES AND
MULTIDIMENSIONAL MODELS I. INTRODUCTION 431 II. WATER BALANCE FOR LAKES
AND RESERVOIRS 432 A. COMPONENTS OF THE WATER BALANCE 433 1. STORAGE 433
2. INFLOW AND OUTFLOW MEASUREMENTS 436 3. DIRECT PRECIPITATION ONTO THE
LAKE SURFACE 437 4. EVAPORATION 438 5. GROUNDWATER SEEPAGE AND
INFILTRATION 444 B. RESERVOIR ROUTING METHODS 446 III. ZERO-DIMENSIONAL
OR BOX MODELS OF LAKE AND RESERVOIR QUALITY 449 IV. ONE-DIMENSIONAL,
LONGITUDINAL MODELS OF LAKES AND RESERVOIRS 453 V. ONE-DIMENSIONAL,
VERTICAL MODELS OF LAKES AND RESERVOIRS 455 A. MIXED LAYER MODELS 456 B.
VERTICAL TURBULENT DIFFUSION MODELS 464 1. EMPIRICAL EXPRESSIONS 464 2.
DYE OR TRACER STUDIES TO DETERMINE VERTICAL MIXING 471 VI.
TWO-DIMENSIONAL (LATERALLY AVERAGED) MODELS 474 A. BOX MODEL APPROACH
475 B. HYDRODYNAMIC AND MASS TRANSPORT MODELS 480 VII. TWO-DIMENSIONAL
DEPTH AVERAGED MODELS 486 VIII. THREE-DIMENSIONAL MODELS 488 REFERENCES
... 491 SYMBOLS USED IN PART III 501 PROBLEMS .-. 507 PART IV ESTUARIES
11 INTRODUCTION TO ESTUARIES I. INTRODUCTION 527 II. GENERAL
CHARACTERISTICS OF ESTUARIES 527 A. CHEMICAL CHARACTERISTICS 528 B.
DENSITY 529 C. TIDES AND THE SALT-WEDGE ESTUARY 530 III. CLASSIFICATION
SCHEMES 534 A. GEOMORPHOLOGY 534 B. DEGREE OF STRATIFICATION 535 12
FACTORS AFFECTING TRANSPORT AND MIXING IN ESTUARIES I. INTRODUCTION 543
II. TIDES 543 A. TIDAL AMPLITUDES 544 B. TIDAL CURRENTS 553 III. THE
CORIOLIS FORCE 556 IV. FRESHWATER INFLOW 558 V. METEOROLOGICAL EFFECTS
559 VI. BATHYMETRY 561 VII. MODEL COMPLEXITY 562 A. SPATIAL AND TEMPORAL
RESOLUTION 563 1. SPATIAL RESOLUTION 564 2. TEMPORAL RESOLUTION 566 B.
COMPLEXITY OF GOVERNING EQUATIONS 568 13 TURBULENT MIXING AND DISPERSION
IN ESTUARIES I. EDDY VISCOSITY AND EDDY DIFFUSIVITY 569 A. FORMULATION
OF COEFFICIENTS 570 B. THE CLOSURE PROBLEM 572 1. ZERO-EQUATION CLOSURE
572 2. ONE-EQUATION CLOSURE 573 3. TWO-EQUATION CLOSURE 573 4. TURBULENT
STRESS AND FLUX EQUATION CLOSURE 574 II. DISPERSION IN ESTUARIES.: 575
III. ESTIMATION OF MIXING TERMS 576 A. EDDY VISCOSITY AND EDDY
DIFFUSIVITY 576 B. DISPERSION 586 14 TIDALLY AVERAGED ESTUARINE MODELS
I. INTRODUCTION 593 II. FRACTION OF FRESHWATER METHOD 599 III. MODIFIED
TIDAL PRISM METHOD 601 IV. PRITCHARD S METHOD 604 V. LUNG AND O CONNOR S
METHOD 609 VI. COMPUTING TIDAL TRANSPORT FROM MEASURED OR PREDICTED
VELOCITIES 616 A. COMPUTING TIDALLY AVERAGED ADVECTION AND DISPERSION
616 1. COMPUTING TIDALLY AVERAGED ADVECTION 618 2. COMPUTING TIDALLY
AVERAGED DISPERSION 619 3. NUMERICAL DIFFUSION 628 B. SPATIAL AVERAGING
OF FINE SCALE INTRATIDAL SIMULATIONS 628 C. THE LAGRANGIAN TRANSPORT
EQUATION 629 D. COMPUTING THE STOKES DRIFT 634 E. A FINAL NOTE ON TIDAL
AVERAGING 640 15 DYNAMIC MODELING OF ESTUARIES I. INTRODUCTION 643 II.
FACTORS THAT DISTINGUISH MODELING APPROACHES 645 A. FORCES AND BOUNDARY
CONDITIONS 646 1. RIVERINE BOUNDARY CONDITIONS 646 2. OPEN WATER
BOUNDARY CONDITIONS 646 3. FORCES DUE TO THE CORIOLIS EFFECT,
ATMOSPHERIC PRESSURE, BAROTROPIC SETUP, AND BAROCLINIC PRESSURE 647 4.
WATER SURFACE CONDITIONS 649 5. BOTTOM BOUNDARY CONDITIONS 650 6.
SHORELINE CONDITIONS 653 B. DIMENSIONALITY 655 C. GRID STRUCTURE 655 1.
HORIZONTAL FINITE DIFFERENCE GRIDS 656 A. RECTANGULAR GRIDS WITH
FIXED-GRID SPACING 656 B. STRETCHED RECTANGULAR GRIDS 656 C. CURVILINEAR
BOUNDARY-FITTED COORDINATE SYSTEMS 658 D. ADAPTIVE GRIDS 662 2. VERTICAL
COORDINATE SYSTEMS 663 A. CARTESIAN VERTICAL COORDINATE 663 B. STRETCHED
GRID 664 C. ISOPYCNIC COORDINATE SYSTEM 665 3. FINITE ELEMENT GRIDS 666
D. NUMERICAL SOLUTION SCHEME 666 III. ONE-DIMENSIONAL MODELS OF
ESTUARIES 668 A. EXAMPLES OF AVAILABLE MODELS 671 1. BRANCH-NETWORK FLOW
MODEL 671 2. CE-QUAL-RIV1 672 3. DYNAMIC ESTUARY MODEL (DEM) 672 4.
EXPLORE-1 673 5. MIT TRANSIENT WATER QUALITY NETWORK MODEL 673 B. CASE
STUDY 674 IV. TWO-DIMENSIONAL (HORIZONTAL PLANE) MODELS 678 A. EXAMPLES
OF AVAILABLE MODELS 680 1. TABS-MD AND RMA2-WES 681 2. WIFM-SAL 682 3.
HSCTM-2D 683 4. FESWMS-2DH 683 5. TIDAL, RESIDUAL, INTERTIDAL MUDFLAT
MODEL 684 6. SIMSYS2D OR SWIFT2D 685 7. CAFEX 686 8. H.S. CHEN S MODEL
687 9. FETRA, SEDIMENT-CONTAMINANT TRANSPORT MODEL 687 10. NELEUS 688
11. SEDZL 688 12. OTHER MODELS 689 B. CASE STUDY 689 V. TWO-DIMENSIONAL
(VERTICAL PLANE) MODELS 690 A. EXAMPLES OF AVAILABLE MODELS 694 1.
CE-QUAL-W2 694 2. BLUMBERG S MODEL 695 B. CASE STUDY 695 VI.
THREE-DIMENSIONAL MODELS 701 A. EXAMPLES OF AVAILABLE MODELS 709 1.
CH3D/CH3D-WES 709 2. EHSM3D 709 3. JOHN PAUL S HYDRODYNAMIC MODEL 709 4.
ECOM-3D/POM 709 5. MODEL FOR ESTUARINE AND COASTAL CIRCULATION AND
ASSESSMENT (MECCA) 710 6. EFDC/HEM3D 710 7. HOTDIM 711 8. RMAMODELS 711
9. TEMPEST 711 B. CASE STUDY 711 VII. COUPLING FLOW AND WATER QUALITY
MODELS 718 A. DIRECTLY LINKED MODELS 718 B. INDIRECT LINKAGE 719
REFERENCES 721 SYMBOLS USED IN PART IV 747 PROBLEMS 763 APPENDIXES IV.A.
NODE FACTORS () AT THE MIDDLE OF EACH CALENDAR YEAR (1990-2029) 772
IV.B. EQUILIBRIUM ARGUMENT (V O + OC 0 ) FOR THE GREENWICH MERIDIAN AT
THE BEGINNING OF EACH CALENDAR YEAR (1990-2029) 776 INDEX 781
|
any_adam_object | 1 |
author | Martin, James L. MacCutcheon, Steven C. |
author_facet | Martin, James L. MacCutcheon, Steven C. |
author_role | aut aut |
author_sort | Martin, James L. |
author_variant | j l m jl jlm s c m sc scm |
building | Verbundindex |
bvnumber | BV012454672 |
callnumber-first | T - Technology |
callnumber-label | TD370 |
callnumber-raw | TD370 |
callnumber-search | TD370 |
callnumber-sort | TD 3370 |
callnumber-subject | TD - Environmental Technology |
classification_rvk | WC 5400 |
ctrlnum | (OCoLC)845182122 (DE-599)BVBBV012454672 |
dewey-full | 627.042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 627 - Hydraulic engineering |
dewey-raw | 627.042 |
dewey-search | 627.042 |
dewey-sort | 3627.042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Biologie Bauingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01983nam a2200517 c 4500</leader><controlfield tag="001">BV012454672</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">990315s1999 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0873716124</subfield><subfield code="9">0-87371-612-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845182122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012454672</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TD370</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">627.042</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 5400</subfield><subfield code="0">(DE-625)148113:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martin, James L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydrodynamics and transport for water quality modeling</subfield><subfield code="c">James L. Martin ; Steven C. McCutcheon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Lewis</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">794 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamik - Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydromechanik - Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wassergüte - Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water quality</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wassergüte</subfield><subfield code="0">(DE-588)4064728-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wassergüte</subfield><subfield code="0">(DE-588)4064728-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">MacCutcheon, Steven C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008451275&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008451275</subfield></datafield></record></collection> |
id | DE-604.BV012454672 |
illustrated | Illustrated |
indexdate | 2024-12-23T15:02:55Z |
institution | BVB |
isbn | 0873716124 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008451275 |
oclc_num | 845182122 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | 794 S. graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Lewis |
record_format | marc |
spellingShingle | Martin, James L. MacCutcheon, Steven C. Hydrodynamics and transport for water quality modeling Hydrodynamik - Mathematisches Modell Hydromechanik - Mathematisches Modell Wassergüte - Mathematisches Modell Mathematisches Modell Hydraulics Mathematical models Hydrodynamics Mathematical models Water quality Mathematical models Wassergüte (DE-588)4064728-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd Hydrodynamik (DE-588)4026302-2 gnd |
subject_GND | (DE-588)4064728-6 (DE-588)4114528-8 (DE-588)4026302-2 |
title | Hydrodynamics and transport for water quality modeling |
title_auth | Hydrodynamics and transport for water quality modeling |
title_exact_search | Hydrodynamics and transport for water quality modeling |
title_full | Hydrodynamics and transport for water quality modeling James L. Martin ; Steven C. McCutcheon |
title_fullStr | Hydrodynamics and transport for water quality modeling James L. Martin ; Steven C. McCutcheon |
title_full_unstemmed | Hydrodynamics and transport for water quality modeling James L. Martin ; Steven C. McCutcheon |
title_short | Hydrodynamics and transport for water quality modeling |
title_sort | hydrodynamics and transport for water quality modeling |
topic | Hydrodynamik - Mathematisches Modell Hydromechanik - Mathematisches Modell Wassergüte - Mathematisches Modell Mathematisches Modell Hydraulics Mathematical models Hydrodynamics Mathematical models Water quality Mathematical models Wassergüte (DE-588)4064728-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd Hydrodynamik (DE-588)4026302-2 gnd |
topic_facet | Hydrodynamik - Mathematisches Modell Hydromechanik - Mathematisches Modell Wassergüte - Mathematisches Modell Mathematisches Modell Hydraulics Mathematical models Hydrodynamics Mathematical models Water quality Mathematical models Wassergüte Hydrodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008451275&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT martinjamesl hydrodynamicsandtransportforwaterqualitymodeling AT maccutcheonstevenc hydrodynamicsandtransportforwaterqualitymodeling |