The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Jerri, Abdul J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Dordrecht [u.a.] Kluwer Acad. Publ. 1998
Schriftenreihe:Mathematics and its applications 446
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV012437923
003 DE-604
005 20030122
007 t|
008 990303s1998 ne d||| |||| 00||| eng d
020 |a 0792351096  |9 0-7923-5109-6 
035 |a (OCoLC)39052415 
035 |a (DE-599)BVBBV012437923 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a ne  |c XA-NL 
049 |a DE-739  |a DE-824  |a DE-91G  |a DE-703  |a DE-29T  |a DE-521  |a DE-83  |a DE-11 
050 0 |a QA295.J47 1998 
082 0 |a 515/.2435 21 
082 0 |a 515/.2435  |2 21 
084 |a SK 450  |0 (DE-625)143240:  |2 rvk 
084 |a MAT 428f  |2 stub 
084 |a 42C15  |2 msc 
084 |a 41A15  |2 msc 
084 |a 42A20  |2 msc 
084 |a MAT 410f  |2 stub 
100 1 |a Jerri, Abdul J.  |e Verfasser  |4 aut 
245 1 0 |a The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations  |c by Abdul J. Jerri 
264 1 |a Dordrecht [u.a.]  |b Kluwer Acad. Publ.  |c 1998 
300 |a XXVII, 336 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Mathematics and its applications  |v 446 
650 4 |a Gibbs phenomenon 
650 4 |a Fourier analysis 
650 4 |a Spline theory 
650 4 |a Wavelets (Mathematics) 
650 0 7 |a Gibbs-Erscheinung  |0 (DE-588)4406652-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Gibbs-Erscheinung  |0 (DE-588)4406652-1  |D s 
689 0 |5 DE-604 
830 0 |a Mathematics and its applications  |v 446  |w (DE-604)BV008163334  |9 446 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008438948&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008438948 

Datensatz im Suchindex

_version_ 1819774409595944960
adam_text THE GIBBS PHENOMENON IN FOURIER ANALYSIS, SPLINES AND WAVELET APPROXIMATIONS BY ABDUL J. JERRI DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, CLARKSON UNIVERSITY, POTSDAM, NEW YORK, U.SA. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON CONTENTS PREFACE XIII ACKNOWLEDGEMENTS XVII AIM OF THE BOOK XIX 1 INTRODUCTION 1 1.1 THE GIBBS-WILBRAHAM PHENOMENON 1 1.2 SOME BASIC ELEMENTS OF FOURIER ANALYSIS . 3 1.3 ILLUSTRATIONS AND ANALYSIS 12 A. THE TRUNCATED FOURIER SERIES APPROXIMATION 12 B. THE TRUNCATED FOURIER INTEGRAL APPROXIMATION .... 16 1.4 FILTERING VIA THE FEJER AVERAGING 26 A. THE FEJER AVERAGING 28 B. THE (C, A) SUMMABILITY 31 1.5 THE LANCZOS-LOCAL-TYPE FILTERING 34 2 ANALYSIS AND FILTERING 37 2.1 THE TRUNCATED FOURIER INTEGRAL 38 2.2 THE FOURIER TRIGONOMETRIC POLYNOMIAL 40 A. A NOTE CONCERNING THE GENERAL ORTHOGONAL EXPANSION 43 2.3 THE TWO BASIC METHODS OF FILTERING 44 A. THE LANCZOS-LOCAL-TYPE A- AVERAGING 45 B. THE METHOD OF FEJER AVERAGING AND SUMMABILITY ... 55 2.4 TRANSFORM METHODS OF FILTERING 56 A. THE GEGENBAUER TRANSFORM METHOD FOR THE TRUNCATED FOURIER SERIES 57 B. THE TRUNCATED FOURIER INTEGRALS 67 2.5 EXAMPLES OF OTHER FILTERS 73 THE FOURIER SERIES IN TWO DIMENSIONS 78 2.6 SOME ADVANTAGES FOR EDGE DETECTION 80 VN VIII CONTENTS Y 2.7 A HISTORICAL NOTE 83 2.8 _ THE HIGHER DIMENSIONAL CASE 100 THE GENERAL ORTHOGONAL EXPANSIONS 107 3.1 A BRIEF OVERVIEW 107 3.2 ORTHOGONAL SERIES EXPANSIONS 109 A. THE STURM-LIOUVILLE PROBLEM 110 B. THE FOURIER-JN-BESSEL SERIES EXPANSION 112 C. THE HANKEL TRANSFORM OF RADIALLY SYMMETRIC FUNC- TIONS IN N DIMENSIONS 119 D. THE CLASSICAL ORTHOGONAL POLYNOMIALS EXPANSION . . . 122 E. THE LEGENDRE POLYNOMIALS SERIES 122 F. THE TCHEBYCHEV POLYNOMIALS SERIES 125 G. THE LAGUERRE POLYNOMIALS SERIES 127 H. THE HERMITE POLYNOMIALS SERIES 130 3.3 THE ASYMPTOTIC RELATION TO FOURIER SERIES 131 RATE OF CONVERGENCE OF THE STURM-LIOUVILLE EIGENFUNC- TIONS EXPANSION 137 SINGULAR STURM-LIOUVILLE PROBLEM 140 3.4 THE GLOBAL EFFECT ON THE CONVERGENCE IN R N 148 A. THE LAPLACIAN IN N-DIMENSIONAL-FOURIER SERIES OF RA- DIAL FUNCTIONS 148 B. THE 3-DIMENSIONAL CASE 150 C. THE FOURIER INTEGRAL REPRESENTATION IN N-DIMENSIONS . 155 3.5 FILTERING FOR ORTHOGONAL EXPANSIONS 156 A. THE FEJER AVERAGING 156 B. A LANCZOS-LIKE A-FACTOR FOR GENERAL ORTHOGONAL EX- PANSIONS 157 1. A LANCZOS-LIKE A-FACTOR FOR FOURIER-J M -BESSEL SERIES . 159 2. ORTHOGONAL POLYNOMIALS EXPANSIONS 171 3. INTEGRAL TRANSFORMS REPRESENTATIONS 177 I SPLINES AND OTHER APPROXIMATIONS 183 4.1 THE PIECEWISE-LINEAR APPROXIMATION 184 4.2 HIGH ORDER SPLINES APPROXIMATION 191 4.3 APPROXIMATION IN L P -SENSE 199 4.4 THE INTERPOLATION OF THE DFT 203 » THE WAVELET REPRESENTATIONS 207 5.1 WAVELETS AND FOURIER ANALYSIS 207 A. THE POSSIBLE REASON BEHIND THE GIBBS PHENOMENON . 207 CONTENTS IX B. ILLUSTRATION OF SOME BASIC WAVELETS, THEIR FOURIER TRANS- F FORMS AND A GLIMPSE AT THE GIBBS PHENOMENON . . 216 5.2 ELEMENTS OF WAVELET ANALYSIS 222 A. THE CONTINUOUS WAVELET (DOUBLE INTEGRAL) REPRESEN- TATION OF FUNCTIONS 222 B. THE DISCRETE WAVELET (DOUBLE) SERIES EXPANSION OF FUNCTIONS 227 5.3 THE DISCRETE WAVELET SERIES APPROXIMATION 230 A. PRELIMINARIES FOR HAVING DISCRETE ORTHONORMAL WAVELETS231 5.4 THE CONTINUOUS WAVELET REPRESENTATION 246 A. DETAILED ANALYSIS OF THE GIBBS PHENOMENON FOR EVEN WAVELETS - THE MEXICAN HAT WAVELET 247 B. THE MEXICAN HAT WAVELET AND ITS GIBBS PHENOMENON 266 C. HARDY-FUNCTIONS WAVELETS 274 D. RECENT PRELIMINARY RESULTS 285 REFERENCES 287 APPENDIX A 297 INDEX OF NOTATIONS 319 SUBJECT INDEX V 327 AUTHOR INDEX 335
any_adam_object 1
author Jerri, Abdul J.
author_facet Jerri, Abdul J.
author_role aut
author_sort Jerri, Abdul J.
author_variant a j j aj ajj
building Verbundindex
bvnumber BV012437923
callnumber-first Q - Science
callnumber-label QA295
callnumber-raw QA295.J47 1998
callnumber-search QA295.J47 1998
callnumber-sort QA 3295 J47 41998
callnumber-subject QA - Mathematics
classification_rvk SK 450
classification_tum MAT 428f
MAT 410f
ctrlnum (OCoLC)39052415
(DE-599)BVBBV012437923
dewey-full 515/.243521
515/.2435
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.2435 21
515/.2435
dewey-search 515/.2435 21
515/.2435
dewey-sort 3515 42435 221
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01789nam a2200493 cb4500</leader><controlfield tag="001">BV012437923</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20030122 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">990303s1998 ne d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792351096</subfield><subfield code="9">0-7923-5109-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)39052415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012437923</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA295.J47 1998</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2435 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2435</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 428f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42C15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">41A15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42A20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 410f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jerri, Abdul J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations</subfield><subfield code="c">by Abdul J. Jerri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer Acad. Publ.</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 336 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and its applications</subfield><subfield code="v">446</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gibbs phenomenon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelets (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gibbs-Erscheinung</subfield><subfield code="0">(DE-588)4406652-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gibbs-Erscheinung</subfield><subfield code="0">(DE-588)4406652-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and its applications</subfield><subfield code="v">446</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">446</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008438948&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008438948</subfield></datafield></record></collection>
id DE-604.BV012437923
illustrated Illustrated
indexdate 2024-12-23T15:02:36Z
institution BVB
isbn 0792351096
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008438948
oclc_num 39052415
open_access_boolean
owner DE-739
DE-824
DE-91G
DE-BY-TUM
DE-703
DE-29T
DE-521
DE-83
DE-11
owner_facet DE-739
DE-824
DE-91G
DE-BY-TUM
DE-703
DE-29T
DE-521
DE-83
DE-11
physical XXVII, 336 S. graph. Darst.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Kluwer Acad. Publ.
record_format marc
series Mathematics and its applications
series2 Mathematics and its applications
spellingShingle Jerri, Abdul J.
The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations
Mathematics and its applications
Gibbs phenomenon
Fourier analysis
Spline theory
Wavelets (Mathematics)
Gibbs-Erscheinung (DE-588)4406652-1 gnd
subject_GND (DE-588)4406652-1
title The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations
title_auth The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations
title_exact_search The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations
title_full The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations by Abdul J. Jerri
title_fullStr The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations by Abdul J. Jerri
title_full_unstemmed The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations by Abdul J. Jerri
title_short The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations
title_sort the gibbs phenomenon in fourier analysis splines and wavelet approximations
topic Gibbs phenomenon
Fourier analysis
Spline theory
Wavelets (Mathematics)
Gibbs-Erscheinung (DE-588)4406652-1 gnd
topic_facet Gibbs phenomenon
Fourier analysis
Spline theory
Wavelets (Mathematics)
Gibbs-Erscheinung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008438948&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV008163334
work_keys_str_mv AT jerriabdulj thegibbsphenomenoninfourieranalysissplinesandwaveletapproximations