Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lambe, Larry A. (VerfasserIn), Radford, David E. 1943- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Dordrecht [u.a.] Kluwer 1997
Schriftenreihe:Mathematics and its applications 423
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV012368176
003 DE-604
005 00000000000000.0
007 t
008 990125s1997 |||| 00||| eng d
020 |a 0792347218  |9 0-7923-4721-8 
035 |a (OCoLC)37373500 
035 |a (DE-599)BVBBV012368176 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-703  |a DE-19 
050 0 |a QC174.52.Y36 
082 0 |a 530.14/3  |2 21 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
100 1 |a Lambe, Larry A.  |e Verfasser  |4 aut 
245 1 0 |a Introduction to the quantum Yang Baxter equation and quantum groups  |b an algebraic approach  |c by Larry A. Lambe and David E. Radford 
264 1 |a Dordrecht [u.a.]  |b Kluwer  |c 1997 
300 |a XX, 293 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Mathematics and its applications  |v 423 
650 4 |a Mathematische Physik 
650 4 |a Hopf algebras 
650 4 |a Mathematical physics 
650 4 |a Quantum groups 
650 4 |a Yang-Baxter equation 
650 0 7 |a Quantengruppe  |0 (DE-588)4252437-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Yang-Baxter-Gleichung  |0 (DE-588)4291478-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Yang-Baxter-Gleichung  |0 (DE-588)4291478-4  |D s 
689 0 1 |a Quantengruppe  |0 (DE-588)4252437-4  |D s 
689 0 |5 DE-604 
700 1 |a Radford, David E.  |d 1943-  |e Verfasser  |0 (DE-588)1020225114  |4 aut 
830 0 |a Mathematics and its applications  |v 423  |w (DE-604)BV008163334  |9 423 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008387756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-008387756 

Datensatz im Suchindex

_version_ 1804126997782200320
adam_text Contents Foreword xi Preface xv Acknowledgments xvii Introduction xix 1. ALGEBRAIC PRELIMINARIES 1 1.1 Coalgebras 1 1.2 The Algebra C* 10 1.3 The Coalgebra A 17 1.3.1 The Construction and Characterizations o A0 17 1.3.2 Double Duals 20 1.3.3 The Fundamental Theorem of Coalgebras 21 1.4 Rational Modules and Comodules 23 1.4.1 Rational Modules 23 1.4.2 Comodules 24 1.4.3 MrandMr 27 1.4.4 MT Characterized in Terms of Annihilators 27 1.4.5 Another Proof of the Fundamental Theorem of Coalgebras 29 1.5 Bialgebras 32 1.6 Hopf Algebras 39 1.6.1 The Convolution Algebra 40 1.6.2 Definition of Hopf Algebra and Antipode 41 1.7 The Coradical and the Coradical Filtration 46 1.8 Pointed Hopf Algebras 53 1.9 (Co)Module (Co)Algebras 54 1.9.1 i? Module Algebras and Coalgebras 55 1.9.2 /f Comodule Algebras and Coalgebras 59 viii INTRODUCTION TO THE QYBE 2. THE QUANTUM YANG BAXTER EQUATION (QYBE) 65 2.1 The Constant Form of the QYBE 66 2.1.1 The Constant Form of the QYBE in H S Notation 67 2.1.2 The Constant Form of the QYBE in Coordinates 67 2.2 The Braid Equation 68 2.3 Symmetries 70 2.4 The One Parameter Form of the QYBE 72 2.5 The Two Parameter Form of the QYBE 74 2.6 A System of Polynomial Equations (the QYB Variety) 74 2.7 The Bialgebra Associated to the QYBE 76 2.7.1 A Module Action Associated to a QYBE Solution 76 2.7.2 Comodule Coaction 77 2.8 Factoring a QYBE Solution Over a Bialgebra 78 2.9 Compatibility Conditions in the Constant Case 79 2.9.1 The Fundamental Compatibility Condition in Coordinates 79 2.9.2 The (Co)Commutative Compatibility Condition 80 2.9.3 Compatibility Conditions in H S Notation 81 2.10 Compatibility Conditions in the Parameterized Cases 81 2.11 Reducing the Degree of the QYB Variety 83 2.11.1 From Cubic to Quadratic to Linear 83 2.11.2 A Curious Example 83 3. CATEGORIES OF QUANTUM YANG BAXTER MODULES 87 3.1 Various Categories 87 3.1.1 Left QYB A Modules 88 3.1.2 CQYB A Modules 89 3.1.3 Right QYB ^ Modules 90 3.1.4 Weak QYB/1 Modules 91 3.2 Congruence in A QyB 93 3.3 Recollections of Various Module and Comodule Structures 94 3.4 General Constructions in A QyB 96 3.4.1 Sub Objects, Quotient Objects of A QyB 96 3.4.2 Direct Sums in A QyB 96 3.4.3 Duals of Objects of AQyB 96 3.4.4 Structure Induced from Objects of A QyB 99 3.5 Constructions in nQyB when Hop has an Antipode 99 3.5.1 Equivalent Formulations of Compatibility 99 3.5.2 The Rational Part of a Left H, /P Module 101 3.5.3 Direct Products in AQyB 102 3.5.4 Sub Objects of Objects of H QyB when H°p has an Antipode 103 3.6 The Relationship Between QYBE Solutions R and RT 104 3.7 QYB Structures on H when H°p is a Hopf Algebra 105 CONTENTS ix 3.7.1 Generalized Coadjoint Action 106 3.7.2 Generalized Adjoint Action 109 3.8 Tensor Product in A QyB 110 3.8.1 The Tensor Algebra 113 3.8.2 Uom(M,N) and Quantum Yang Baxter Submodules 113 3.9 Tensor Product of Parameterized QYBE Solutions 114 3.10 Algebras of HQyB 115 3.11 Coalgebras, Bialgebras, and Hopf Algebras of nQy 116 3.12 Smash Biproducts Associated to H H QyB 117 4. MORE ON THE BIALGEBRA ASSOCIATED TO THE QYBE 121 4.1 Module Comodule Compatibility Revisited 121 4.2 A Basis Free Description of the FRT Construction 128 4.3 A(R)°p, A{R)c°p, and A{R)op cop as FRT Constructions 131 4.4 Conditions for A(R) to be a Pointed Bialgebra 138 5. THE FUNDAMENTAL EXAMPLE OF A QUANTUM GROUP 143 5.1 Review of SL(2,fc) 143 5.1.1 The Coordinate Ring of SL(2, A;) 144 5.1.2 The Lie Algebra sl(2,fc) 146 5.1.3 Irreducible Representations of sl(2, k) 148 5.2 Derivations and (Co)Algebra Actions Revisited 149 5.3 A Hopf Algebra Closely Related to fc[SL(2,fc)] 150 5.4 Grouplikes and Skew Primitives of fc[SL,(2, k)}° 151 5.5 Embedding W(sl(2, it)) into Ar[SL(2,fc)]° 153 5.6 Quantum Analogs of W(sl(2, A;)) 155 6. QUASITRIANGULAR STRUCTURES AND THE DOUBLE 161 6.1 Quasitriangular Algebras 161 6.2 Quasitriangular Structures Arising from Integrals 162 6.3 Quasitriangular Bialgebras and Quasitriangular Hopf Algebras 164 6.4 The Quantum Double 175 6.5 Some Fundamental Examples of Pointed Hopf Algebras 181 6.5.1 Q Binomial Coefficients 182 6.5.2 Construction of the Examples 184 6.6 A Family of QT Hopf Algebras and Associated Doubles 186 6.6.1 Construction and Properties of//(w.^lj) 187 6.6.2 Construction and Properties of f/fjv.^w) 191 7. COQUASITRIANGULAR STRUCTURES 197 7.1 Further Properties of A{R) 197 X INTRODUCTION TO THE QYBE 7.2 CoquasitriangularCoalgebras 199 7.3 Coquasitriangular Bialgebras and Hopf Algebras 203 7.4 The Free Coquasitriangular Bialgebra 209 7.5 One Parameter QYBE, Coquasitriangularity, and Tensor Product 213 7.5.1 /^ Commutative Spectral Parameter 214 7.5.2 Constructions when X is a Group 215 7.5.3 Tensor Product of One Parameter QYBE Solutions 218 8. SOME CLASSES OF SOLUTIONS 219 8.1 Some Consequences of M Reduction 220 8.2 When A(R) is Generated by Grouplike Elements 222 8.3 Solutions when DimM = 2 and A(R) is Pointed 226 8.4 Patching and Solutions in Higher Dimension 232 8.5 A Class of Weak QYB Modules 233 8.6 Some One Parameter Solutions 244 8.6.1 Some Specific Solutions 244 8.6.2 A p Perturbation Example 247 9. CATEGORICAL CONSTRUCTIONS 249 9.1 Coends 249 9.2 Quasi Symmetric Monoidal Categories 250 9.3 Rigid Monoidal Categories and Hopf Algebras 254 9.4 Categories and Coquasitriangular Hopf Algebras 258 9.5 The QYBE in Other Categories 258 9.6 The Category of Graded Modules 259 Appendices 261 A Prerequisites 261 A.1 The Ground Ring k and Basic fc Linear Maps 261 A.2 Algebras, Coalgebras, and Their Representations 262 A.3 Various Notations Related to the QYBE 263 A.3.1 Structure Constants 263 A.3.2 Heyneman Sweedler and H S Notations 267 A.3.3 Categorical Notation 268 A.4 Some Results from Linear Algebra 269 A.4.1 Rank of Tensors and Endomorphisms 269 A.4.2 Closed Subspaces of U* 272 A.4.3 Cofinite Subspaces and Continuous Linear Maps 277 References 281 Index 291
any_adam_object 1
author Lambe, Larry A.
Radford, David E. 1943-
author_GND (DE-588)1020225114
author_facet Lambe, Larry A.
Radford, David E. 1943-
author_role aut
aut
author_sort Lambe, Larry A.
author_variant l a l la lal
d e r de der
building Verbundindex
bvnumber BV012368176
callnumber-first Q - Science
callnumber-label QC174
callnumber-raw QC174.52.Y36
callnumber-search QC174.52.Y36
callnumber-sort QC 3174.52 Y36
callnumber-subject QC - Physics
classification_rvk SK 950
ctrlnum (OCoLC)37373500
(DE-599)BVBBV012368176
dewey-full 530.14/3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.14/3
dewey-search 530.14/3
dewey-sort 3530.14 13
dewey-tens 530 - Physics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01779nam a2200457 cb4500</leader><controlfield tag="001">BV012368176</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990125s1997 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792347218</subfield><subfield code="9">0-7923-4721-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37373500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012368176</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.52.Y36</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lambe, Larry A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the quantum Yang Baxter equation and quantum groups</subfield><subfield code="b">an algebraic approach</subfield><subfield code="c">by Larry A. Lambe and David E. Radford</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 293 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and its applications</subfield><subfield code="v">423</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hopf algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yang-Baxter equation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Yang-Baxter-Gleichung</subfield><subfield code="0">(DE-588)4291478-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Yang-Baxter-Gleichung</subfield><subfield code="0">(DE-588)4291478-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Radford, David E.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1020225114</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and its applications</subfield><subfield code="v">423</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">423</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008387756&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008387756</subfield></datafield></record></collection>
id DE-604.BV012368176
illustrated Not Illustrated
indexdate 2024-07-09T18:26:21Z
institution BVB
isbn 0792347218
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008387756
oclc_num 37373500
open_access_boolean
owner DE-703
DE-19
DE-BY-UBM
owner_facet DE-703
DE-19
DE-BY-UBM
physical XX, 293 S.
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Kluwer
record_format marc
series Mathematics and its applications
series2 Mathematics and its applications
spelling Lambe, Larry A. Verfasser aut
Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach by Larry A. Lambe and David E. Radford
Dordrecht [u.a.] Kluwer 1997
XX, 293 S.
txt rdacontent
n rdamedia
nc rdacarrier
Mathematics and its applications 423
Mathematische Physik
Hopf algebras
Mathematical physics
Quantum groups
Yang-Baxter equation
Quantengruppe (DE-588)4252437-4 gnd rswk-swf
Yang-Baxter-Gleichung (DE-588)4291478-4 gnd rswk-swf
Yang-Baxter-Gleichung (DE-588)4291478-4 s
Quantengruppe (DE-588)4252437-4 s
DE-604
Radford, David E. 1943- Verfasser (DE-588)1020225114 aut
Mathematics and its applications 423 (DE-604)BV008163334 423
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008387756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Lambe, Larry A.
Radford, David E. 1943-
Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach
Mathematics and its applications
Mathematische Physik
Hopf algebras
Mathematical physics
Quantum groups
Yang-Baxter equation
Quantengruppe (DE-588)4252437-4 gnd
Yang-Baxter-Gleichung (DE-588)4291478-4 gnd
subject_GND (DE-588)4252437-4
(DE-588)4291478-4
title Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach
title_auth Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach
title_exact_search Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach
title_full Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach by Larry A. Lambe and David E. Radford
title_fullStr Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach by Larry A. Lambe and David E. Radford
title_full_unstemmed Introduction to the quantum Yang Baxter equation and quantum groups an algebraic approach by Larry A. Lambe and David E. Radford
title_short Introduction to the quantum Yang Baxter equation and quantum groups
title_sort introduction to the quantum yang baxter equation and quantum groups an algebraic approach
title_sub an algebraic approach
topic Mathematische Physik
Hopf algebras
Mathematical physics
Quantum groups
Yang-Baxter equation
Quantengruppe (DE-588)4252437-4 gnd
Yang-Baxter-Gleichung (DE-588)4291478-4 gnd
topic_facet Mathematische Physik
Hopf algebras
Mathematical physics
Quantum groups
Yang-Baxter equation
Quantengruppe
Yang-Baxter-Gleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008387756&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV008163334
work_keys_str_mv AT lambelarrya introductiontothequantumyangbaxterequationandquantumgroupsanalgebraicapproach
AT radforddavide introductiontothequantumyangbaxterequationandquantumgroupsanalgebraicapproach