Quantum stochastic calculus and representations of Lie superalgebras

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Eyre, Timothy M. W. 1971- (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: Berlin [u.a.] Springer 1998
Schriftenreihe:Lecture notes in mathematics 1692
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV012140344
003 DE-604
005 20040924
007 t|
008 980901s1998 gw |||| 00||| ger d
016 7 |a 954134958  |2 DE-101 
020 |a 3540648976  |c Gb. : DM 37.00  |9 3-540-64897-6 
035 |a (OCoLC)246348605 
035 |a (DE-599)BVBBV012140344 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-824  |a DE-91G  |a DE-739  |a DE-29  |a DE-355  |a DE-19  |a DE-706  |a DE-634  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA3 
050 0 |a QC174.17.S6 
082 0 |a 510 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 173f  |2 stub 
084 |a 81S25  |2 msc 
084 |a PHY 015f  |2 stub 
100 1 |a Eyre, Timothy M. W.  |d 1971-  |e Verfasser  |0 (DE-588)12033612X  |4 aut 
245 1 0 |a Quantum stochastic calculus and representations of Lie superalgebras  |c Timothy M. W. Eyre 
264 1 |a Berlin [u.a.]  |b Springer  |c 1998 
300 |a VIII, 138 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 1692 
650 4 |a Quantentheorie - Stochastischer Prozess - Stochastische Analysis - Lie-Superalgebra 
650 4 |a Mathematische Physik 
650 4 |a Quantentheorie 
650 4 |a Mathematical physics 
650 4 |a Quantum theory 
650 4 |a Stochastic processes 
650 0 7 |a Stochastische Analysis  |0 (DE-588)4132272-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantentheorie  |0 (DE-588)4047992-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Lie-Superalgebra  |0 (DE-588)4304027-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Quantentheorie  |0 (DE-588)4047992-4  |D s 
689 0 1 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 0 2 |a Stochastische Analysis  |0 (DE-588)4132272-1  |D s 
689 0 3 |a Lie-Superalgebra  |0 (DE-588)4304027-5  |D s 
689 0 |5 DE-604 
830 0 |a Lecture notes in mathematics  |v 1692  |w (DE-604)BV000676446  |9 1692 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008223198&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008223198 

Datensatz im Suchindex

DE-19_call_number 1601/SI 850-1692
DE-19_location 95
DE-BY-UBM_katkey 2709407
DE-BY-UBM_media_number 41602533020018
DE-BY-UBR_call_number 80/SI 850
DE-BY-UBR_katkey 2373422
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069030185131
_version_ 1823052449028505600
adam_text Table of Contents 1. Introduction 1 1.1 Discussion 1 1.2 Overview 2 1.3 Notational Conventions 5 2. Quantum Stochastic Calculus 7 2.1 The Kernel Construction and Fock Space 7 2.2 The Processes of Quantum Stochastic Calculus 9 2.3 Construction of Simple Quantum Stochastic Integrals 12 2.4 Extending the Integral 15 2.5 Iterated Integrals 17 2.6 Boson Fermion Unification 19 3. Z2 Graded Structures 23 3.1 Z2 Graded Vector Spaces 23 3.2 Z2 Graded Algebras 24 3.3 Lie Superalgebras 27 3.4 The Universal Enveloping Superalgebra 30 4. Representations of Lie Superalgebras in Z2 Graded Quantum Stochastic Calculus 33 4.1 Lie Algebra Representations in Ungraded Quantum Stochastic Calculus 33 4.2 Boson—Fermion Equivalence in Quantum Stochastic Calculus of Dimension 1 34 4.3 A Partial Generalisation 37 4.4 The Construction of M0(N, r) 38 4.5 Definition of the Processes of Z2 Graded Quantum Stochastic Calculus 41 4.6 Some Lemmas 43 4.7 The Main Theorem 47 5. The Ungraded Higher Order Ito Product Formula 51 5.1 The * Product 51 5.2 Fundamental Property of * 53 VIII Table of Contents 6. The Ito Superalgebra 59 6.1 Preliminary Definitions 59 6.2 Definition of the A»B Products 61 6.3 A Computational Device 62 6.4 The * Product 64 6.5 Supersymmetric Tensors 66 7. Some Results in Z2 Graded Quantum Stochastic Calculus 77 7.1 The First Fundamental Formula in Z2 Graded Quantum Stochastic Calculus 77 7.2 The Second Fundamental Formula in Z2 Graded Quantum Stochastic Calculus 78 7.3 Discussion of the Second Fundamental Formula in Z2 Graded Quantum Stochastic Calculus 80 7.4 Adjoints of Zj Graded Quantum Stochastic Integrals 86 7.5 The Map I 89 7.6 Fundamental Property of * 90 7.7 The Injectivity of 7 96 7.8 The 0 Product 98 8. Chaotic Expansions 101 8.1 Preliminaries 101 8.2 The Co Unit 102 8.3 The Co Product and the Difference Map k 106 8.4 The Chaos Map 108 9. Extensions 113 9.1 Introduction 113 9.2 Zn Grading of M0(N) 113 9.3 Zn Grading of Quantum Stochastic Calculus 115 9.4 Conjugation 116 9.5 The Taking of Adjoints 119 9.6 The Second Fundamental Formula in Zn Graded Quantum Stochastic Calculus 122 9.7 The Higher Order Ito Product Formula in Zn Graded Quantum Stochastic Calculus 124 9.8 Commutation Relations 125 9.9 Alternative Sources of Commutation Relations 125 9.10 Zn Graded Quantum Stochastic Calculus With Infinite Degrees of Freedom 129 References 133 Index 135
any_adam_object 1
author Eyre, Timothy M. W. 1971-
author_GND (DE-588)12033612X
author_facet Eyre, Timothy M. W. 1971-
author_role aut
author_sort Eyre, Timothy M. W. 1971-
author_variant t m w e tmw tmwe
building Verbundindex
bvnumber BV012140344
callnumber-first Q - Science
callnumber-label QA3
callnumber-raw QA3
QC174.17.S6
callnumber-search QA3
QC174.17.S6
callnumber-sort QA 13
callnumber-subject QA - Mathematics
classification_rvk SI 850
SK 340
SK 820
classification_tum MAT 173f
PHY 015f
ctrlnum (OCoLC)246348605
(DE-599)BVBBV012140344
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02380nam a2200601 cb4500</leader><controlfield tag="001">BV012140344</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040924 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980901s1998 gw |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">954134958</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540648976</subfield><subfield code="c">Gb. : DM 37.00</subfield><subfield code="9">3-540-64897-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246348605</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012140344</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC174.17.S6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 173f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81S25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 015f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eyre, Timothy M. W.</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12033612X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum stochastic calculus and representations of Lie superalgebras</subfield><subfield code="c">Timothy M. W. Eyre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 138 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1692</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie - Stochastischer Prozess - Stochastische Analysis - Lie-Superalgebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1692</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1692</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008223198&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008223198</subfield></datafield></record></collection>
id DE-604.BV012140344
illustrated Not Illustrated
indexdate 2025-02-03T16:57:40Z
institution BVB
isbn 3540648976
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008223198
oclc_num 246348605
open_access_boolean
owner DE-824
DE-91G
DE-BY-TUM
DE-739
DE-29
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-706
DE-634
DE-83
DE-11
DE-188
owner_facet DE-824
DE-91G
DE-BY-TUM
DE-739
DE-29
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-706
DE-634
DE-83
DE-11
DE-188
physical VIII, 138 S.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Eyre, Timothy M. W. 1971-
Quantum stochastic calculus and representations of Lie superalgebras
Lecture notes in mathematics
Quantentheorie - Stochastischer Prozess - Stochastische Analysis - Lie-Superalgebra
Mathematische Physik
Quantentheorie
Mathematical physics
Quantum theory
Stochastic processes
Stochastische Analysis (DE-588)4132272-1 gnd
Stochastischer Prozess (DE-588)4057630-9 gnd
Quantentheorie (DE-588)4047992-4 gnd
Lie-Superalgebra (DE-588)4304027-5 gnd
subject_GND (DE-588)4132272-1
(DE-588)4057630-9
(DE-588)4047992-4
(DE-588)4304027-5
title Quantum stochastic calculus and representations of Lie superalgebras
title_auth Quantum stochastic calculus and representations of Lie superalgebras
title_exact_search Quantum stochastic calculus and representations of Lie superalgebras
title_full Quantum stochastic calculus and representations of Lie superalgebras Timothy M. W. Eyre
title_fullStr Quantum stochastic calculus and representations of Lie superalgebras Timothy M. W. Eyre
title_full_unstemmed Quantum stochastic calculus and representations of Lie superalgebras Timothy M. W. Eyre
title_short Quantum stochastic calculus and representations of Lie superalgebras
title_sort quantum stochastic calculus and representations of lie superalgebras
topic Quantentheorie - Stochastischer Prozess - Stochastische Analysis - Lie-Superalgebra
Mathematische Physik
Quantentheorie
Mathematical physics
Quantum theory
Stochastic processes
Stochastische Analysis (DE-588)4132272-1 gnd
Stochastischer Prozess (DE-588)4057630-9 gnd
Quantentheorie (DE-588)4047992-4 gnd
Lie-Superalgebra (DE-588)4304027-5 gnd
topic_facet Quantentheorie - Stochastischer Prozess - Stochastische Analysis - Lie-Superalgebra
Mathematische Physik
Quantentheorie
Mathematical physics
Quantum theory
Stochastic processes
Stochastische Analysis
Stochastischer Prozess
Lie-Superalgebra
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008223198&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT eyretimothymw quantumstochasticcalculusandrepresentationsofliesuperalgebras