The physical basis of biochemistry the foundations of molecular biophysics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bergethon, Peter R. (VerfasserIn)
Format: Buch
Sprache:German
Veröffentlicht: New York u.a. Springer 1998
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV012110992
003 DE-604
005 20000315
007 t|
008 980811s1998 gw d||| |||| 00||| ger d
016 7 |a 954215788  |2 DE-101 
020 |a 0387982620  |c Pp. : DM 128.00  |9 0-387-98262-0 
035 |a (OCoLC)845460882 
035 |a (DE-599)BVBBV012110992 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
044 |a gw  |c DE 
049 |a DE-20  |a DE-91G  |a DE-M49  |a DE-526  |a DE-634 
082 0 |a 572 
084 |a WD 2000  |0 (DE-625)148161:  |2 rvk 
084 |a WD 2200  |0 (DE-625)148163:  |2 rvk 
084 |a PHY 820f  |2 stub 
084 |a CHE 802f  |2 stub 
100 1 |a Bergethon, Peter R.  |e Verfasser  |4 aut 
245 1 0 |a The physical basis of biochemistry  |b the foundations of molecular biophysics  |c Peter R. Bergethon 
264 1 |a New York u.a.  |b Springer  |c 1998 
300 |a XXII, 567 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturangaben 
650 0 7 |a Molekulare Biophysik  |0 (DE-588)4170391-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Biophysikalische Chemie  |0 (DE-588)4291844-3  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Biophysikalische Chemie  |0 (DE-588)4291844-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Molekulare Biophysik  |0 (DE-588)4170391-1  |D s 
689 1 |8 1\p  |5 DE-604 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008200362&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008200362 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 CHE 802f 2002 A 1784
1001 76.2004 B 1268
DE-BY-TUM_katkey 1111771
DE-BY-TUM_location 02
Mag
DE-BY-TUM_media_number 040020602633
040050386519
_version_ 1820892285409165312
adam_text CONTENTS PREFACE V TO THE STUDENT IX PART 1 THE SCIENCE AND PHILOSOPHY OF BIOPHYSICAL STUDY CHAPTER 1 INTRODUCTION TO THE PRINCIPLES AND PRACTICE OF BIOPHYSICAL CHEMISTRY 3 1.1 DESCRIBE THE PHENOMENON: WHAT IS HAPPENING HERE? 3 1.2 IDENTIFYING THE COMPONENTS OF A SYSTEM: WHO IS INVOLVED? 3 1.3 ANALYSIS OF STRUCTURE: WHAT DOES IT LOOK LIKE? 4 1.4 ANALYSIS OF FUNCTION: WHAT DOES IT DO? 4 CHAPTER 2 PHYSICAL THOUGHTS, BIOLOGICAL SYSTEMS: THE APPLICATION OF MODELING PRINCIPLES TO UNDERSTANDING BIOLOGICAL SYSTEMS .... 8 2.1 THE GEDANKEN EXPERIMENT 8 2.2 PHYSICAL THOUGHTS, BIOLOGICAL SYSTEMS: MODELING AS THE LINK BETWEEN THEORY, UNDERSTANDING, AND REALITY 8 2.3 THE BEGINNINGS OF MODERN SCIENCE 9 2.4 THE INTERACTION BETWEEN FORMAL MODELS AND NATURAL SYSTEMS 11 2.5 OBSERVABLES: THE LINK BETWEEN OBSERVER AND REALITY 11 2.6 THE MODELING MIRROR 12 2.7 ABSTRACTION AND APPROXIMATION 13 2.8 ABSTRACT STATES VS. OBSERVABLE STATES 14 2.9 MEASUREMENT 14 2.10 THE SIMPLIFYING CONCEPT OF ABSTRACTION 15 2.11 EQUATIONS OF STATE 15 2.12 EQUIVALENT DESCRIPTIONS 17 2.13 SYMMETRY AND SYMMETRY OPERATIONS 18 2.14 THE GOODNESS OF THE MODEL DEPENDS ON WHERE YOU LOOK ... 19 2.15 SMOOTHLY DIFFERENTIABLE STATE SPACES 19 2.16 BIFURCATIONS IN STATE SPACE: COMPLEXITY 21 2.17 CATASTROPHES 22 2.18 CHAOS 24 CHAPTER 3 PROBABILITY AND STATISTICS 27 3.1 INTRODUCTION 27 3.2 DISCRETE PROBABILITY 27 3.3 COUNTING TECHNIQUES 28 3.3.1 MULTIPLICATION 29 3.3.2 PERMUTATIONS 29 3.3.3 COMBINATIONS 29 XI CONTENTS 3.3.4 COUNTING INDISTINGUISHABLE VS. DISTINGUISHABLE ENTITIES 29 3.4 CONDITIONAL AND INDEPENDENT EVENTS 30 3.5 DISTRIBUTIONS 31 3.5.1 THE MULTINOMIAL COEFFICIENT 31 3.5.2 BINOMIAL DISTRIBUTION 31 3.5.3 POISSON DISTRIBUTION 32 3.6 CONTINUOUS PROBABILITY 33 3.6.1 SOME MATHEMATICAL PROPERTIES OF PROBABILITY DENSITY FUNCTIONS 34 3.6.2 THE EXPONENTIAL DENSITY FUNCTION 35 3.6.3 THE GAUSSIAN DISTRIBUTION 36 3.6.4 STIRLING S FORMULA 37 3.6.5 THE BOLTZMANN DISTRIBUTION 38 PART 2 PHYSICAL FOUNDATIONS CHAPTER 4 PHYSICAL PRINCIPLES : ENERGY*THE PRIME OBSERVABLE 43 4.1 ABSTRACTIONS AND EXPERIMENTS 43 4.2 POTENTIAL ENERGY SURFACES: FINDING STRUCTURE BY MEASURING ENERGY 43 4.3 STRUCTURE OVER TIME: FUNCTION IS STRUCTURE IN MOTION 44 4.4 THE FOUNDATION PRINCIPLES: SYMMETRY, CONSERVATION, AND ACTION 46 CHAPTER 5 PHYSICAL PRINCIPLES: MECHANICS AND MOTION 48 5.1 THE DANCE OF MOLECULES: LEARNING THE STEPS 48 5.2 MOTION IN ONE AND TWO DIMENSIONS 48 5.2.1 MOTION UNDER CONSTANT ACCELERATION 49 5.2.2 PROJECTILE MOTION IN A CONSTANT POTENTIAL ENERGY FIELD (NEAR THE EARTH WITH VERTICAL ACCELERATION OF G) 49 5.2.3 CIRCULAR MOTION WITH CONSTANT SPEED (THE CENTRIFUGE) 49 5.2.4 NEWTON S LAWS OF MOTION 51 5.3 FORCE AND MASS 51 5.4 CONSERVATION 52 5.5 CONSTANT FORCES FOR CONSTANT CONSIDERATION 52 5.5.1 BUOYANT FORCES 53 5.5.2 RETARDING FORCES PROPORTIONAL TO SPEED 53 5.5.3 FRICTIONAL COEFFICIENTS IN THE ANALYSIS OF MACROMOLECULAR STRUCTURE 53 5.5.4 CIRCULAR MOTION 54 5.5.5 SEDIMENTATION 55 5.6 WORK 58 5.6.1 ELECTRICAL WORK 59 5.6.2 PRESSURE-VOLUME WORK 60 5.6.3 GRAVITY AND SPRINGS 60 5.6.4 OSCILLATORY MOTION 61 5.7 COLLISIONS 61 5.8 MECHANICS AND MOLECULES 62 5.8.1 KINETIC THEORY OF TEMPERATURE AND INTERNAL ENERGY OF SYSTEMS 63 XII CONTENTS 5.8.2 THE PRESSURE OF A GAS 63 5.8.3 THE LAW OF EQUIPARTITION OF ENERGY 65 CHAPTER 6 PHYSICAL PRINCIPLES: WAVES 68 6.1 THE ESSENTIAL WAVE 68 6.2 PULSES 68 6.3 THE WAVE FUNCTION 69 6.4 SUPERPOSITION AND INTERFERENCE 69 6.5 VELOCITY OF A WAVE PULSE 70 6.5.1 VELOCITY OF SOUND 70 6.6 REFLECTION AND TRANSMISSION 71 6.7 HARMONIC WAVES 71 6.7.1 WAVELENGTH, FREQUENCY, AND VELOCITY 72 6.7.2 POLARIZATION 72 6.7.3 SUPERPOSITION AND INTERFERENCE: WAVES OF THE SAME FREQUENCY 74 6.8 ENERGY AND INTENSITY OF WAVES 76 6.8.1 SOUND AND THE HUMAN EAR 77 6.9 STANDING WAVES 77 6.10 SUPERPOSITION AND INTERFERENCE: WAVES OF DIFFERENT FREQUENCIES 79 6.11 COMPLEX WAVEFORMS 80 6.12 WAVE PACKETS 80 6.13 DISPERSION 82 6.14 THE WAVE EQUATION 82 6.15 WAVES IN TWO AND THREE DIMENSIONS 83 6.16 THE DOPPLER EFFECT 85 6.17 INTERFERENCE OF TWO OR MORE POINT SOURCES 85 6.18 WAVE PROPAGATION 87 6.19 DETERMINATION OF STRUCTURE: X-RAY DIFFRACTION 89 CHAPTER 7 PHYSICAL PRINCIPLES: ELECTROSTATICS 97 7.1 THE ELECTRIC FORCE 97 7.2 ELECTROSTATICS 97 7.3 THE ELECTRIC FIELD 99 7.4 ELECTRIC DIPOLES 101 7.5 ELECTRICFLUX 101 7.6 GAUSS S LAW 102 7.7 MOTION OF POINT CHARGES IN AN ELECTRIC FIELD 102 7.8 ELECTRIC POTENTIAL 103 7.9 EQUIPOTENTIAL SURFACES 104 7.10 CALCULATING POTENTIAL FIELDS 106 7.11 ELECTROSTATIC FIELD ENERGY 106 CHAPTER 8 PHYSICAL PRINCIPLES: ELECTROMAGNETICS 109 8.1 ELECTRIC CURRENT 109 8.1.1 CURRENT DENSITY AND FLUX 109 8.1.2 OHM SLAW 109 8.2 CIRCUITS 110 8.2.1 USEFUL LEGAL RELATIONS 110 8.2.2 KIRCHOFF S RULES 110 XIII CONTENTS 8.2.3 CAPACITORS IN SERIES AND PARALLEL ILL 8.2.4 RESISTORS IN SERIES AND PARALLEL ILL 8.2.5 RC CIRCUITS AND RELATIONS 112 8.3 MEASURING INSTRUMENTS 113 8.3.1 AMMETERS, VOLTMETERS, AND OHMMETERS 114 8.4 MAGNETISM 115 8.5 MAGNETIC FIELDS 115 8.6 MAGNET INTERACTIONS 116 8.7 INTERACTIONS OF CHARGES WITH A MAGNETIC FIELD 117 8.7.1 CURRENT LOOPS IN A B FIELD 117 8.7.2 POINT CHARGES IN A B FIELD 117 8.8 THE MASS SPECTROMETER 117 8.9 THE SOLENOID: THE PARALLEL PLATE CAPACITOR FOR MAGNETIC STUDIES 118 8.10 MAGNETISM IN MATTER 119 8.11 ATOMIC MAGNETIC MOMENTS 120 8.12 THE DIPOLE RADIATOR: ELECTROMAGNETIC RADIATION 121 8.12.1 OPTICS 122 CHAPTER 9 PHYSICAL PRINCIPLES: QUANTUM MECHANICS 125 9.1 THE HISTORICAL HUBRIS OF CERTAINTY 125 9.2 THE END OF CERTAINTY: THE QUANTUM REVOLUTION 125 9.3 THE ULTRAVIOLET CATASTROPHE 126 9.3.1 THERMAL RADIATION 127 9.3.2 BLACK-BODY RADIATION 127 9.3.3 CLASSICAL THEORY OF CAVITY RADIATION 128 9.3.4 PLANCK S THEORY OF CAVITY RADIATION 129 9.3.5 QUANTUM MODEL MAKING: EPISTEMOLOGICAL REFLECTIONS ON THE MODEL 130 9.4 HEATCAPACITY 131 9.5 PHOTON-PARTICLE PROPERTIES OF RADIATION 132 9.5.1 THE PHOTOELECTRIC EFFECT 132 9.6 THE DUAL NATURE OF ELECTROMAGNETIC RADIATION 133 9.7 WAVELIKE PROPERTIES OF PARTICLES: DEBROGLIE S POSTULATE 134 9.8 THE ELECTRON MICROSCOPE 135 9.9 THE UNCERTAINTY PRINCIPLE 136 9.10 ATOMIC STRUCTURE: HISTORICAL TRACING OF THE CONCEPT OF THE ATOM 137 9.10.1 ATOMIC SPECTRA 138 9.10.2 BOHR SMODEL 139 9.11 QUANTUM MECHANICS 142 9.11.1 THE SCHROEDINGER EQUATION 144 9.12 SOLUTIONS TO THE TIME-INDEPENDENT SCHROEDINGER THEORY 145 9.12.1 LINEAR MOTION: ZERO POTENTIAL FIELD 145 9.12.2 THE STEP POTENTIAL 147 9.12.3 THE BARRIER POTENTIAL 147 9.12.4 THE SQUARE WELL POTENTIAL 148 9.12.5 THE HARMONIC OSCILLATOR 150 9.12.6 ROTATIONAL AND ANGULAR MOTION 152 9.13 BUILDING THE ATOMIC MODEL: ONE ELECTRON ATOM 152 XIV CONTENTS 9.14 BUILDING THE ATOMIC MODEL: MULTIELECTRON ATOMS 154 9.14.1 FERMIONS AND BOSONS 154 9.14.2 HARTREE THEORY 156 CHAPTER 10 CHEMICAL PRINCIPLES 158 10.1 ELECTRONIC DISTRIBUTION 158 10.2 THE NATURE OF CHEMICAL INTERACTIONS 158 10.3 ION-ION INTERACTIONS 158 10.4 ION-DIPOLE INTERACTIONS 158 10.5 ION-INDUCED DIPOLE INTERACTIONS 159 10.6 VAN DER WAALS INTERACTIONS 159 10.6.1 DIPOLE-DIPOLE INTERACTIONS 160 10.6.2 DIPOLE-INDUCED DIPOLE 160 10.6.3 INDUCED DIPOLE-INDUCED DIPOLE OR LONDON FORCES .... 160 10.7 COVALENT BONDS 161 10.8 LEWIS STRUCTURES 161 10.9 VSEPR THEORY 161 10.10 MOLECULAR ORBITAL THEORY 162 10.10.1 LINEAR COMBINATION OF ATOMIC ORBITALS MOLECULAR ORBITAL METHOD 163 10.10.2 MORE ON THE MOLECULAR BOND 167 10.10.3 VALENCE BOND THEORY 167 10.11 HYDROGEN BONDS 169 10.12 BIOLOGICAL SYSTEMS FROM A LIMITED NUMBER OF ELEMENTS 170 PART 3 MEASURING A SYSTEM: TOOLS FOR EXPLORING NATURAL STATE SPACE CHAPTER 11 MEASURING THE ENERGY OF A SYSTEM: ENERGETICS AND THE FIRST LAW OF THERMODYNAMICS 175 11.1 THE CALORIC: ARE NEW RULES NECESSARY? 175 11.2 THE FIRST LAW: THE ENERGY OF THE UNIVERSE IS CONSERVED 175 11.3 DEFINING THERMODYNAMIC TERMS 176 11.3.1 SYSTEMS, SURROUNDINGS, AND BOUNDARIES 176 11.3.2 PROPERTIES OF A SYSTEM 176 11.3.3 EXTENSIVE AND INTENSIVE VARIABLES 176 11.3.4 THE STATE OF A SYSTEM 177 11.3.5 CHANGES IN STATE 177 11.4 EMPIRICALLY EXPLORING THE FIRST LAW 178 11.4.1 SPECIALIZED BOUNDARIES AS TOOLS 179 11.4.2 EVALUATING THE ENERGY OF A SYSTEM 180 11.5 DERIVATION OF THE HEAT CAPACITY 182 11.6 A SYSTEM CONSTRAINED BY PRESSURE: DEFINING ENTHALPY 183 CHAPTER 12 THE WHOLE IS GREATER THAN THE SUM OF ITS PARTS: ENTROPY AND THE SECOND LAW 187 12.1 PERPETUAL MOTION MACHINES 187 12.1.1 THE CONCEPT OF EQUILIBRIUM 187 12.2 A THOUGHT PROBLEM: DESIGNING A PERFECT HEAT ENGINE 188 12.2.1 REVERSIBLE VERSUS IRREVERSIBLE PATHS 188 12.2.2 ACARNOTCYCLE 191 12.2.3 THE PRODUCT OF OUR THOUGHTS: ENTROPY 194 XV CONTENTS 12.3 ENTROPY: A MECHANICAL/KINETIC APPROACH 195 12.3.1 THE STATISTICAL BASIS OF A MECHANISTIC THEORY 196 12.3.2 MEASURING STATISTICALLY: FLUCTUATIONS 197 12.4 STATISTICAL THERMODYNAMICS 197 12.4.1 THE ENSEMBLE METHOD 197 12.4.2 THE CANONICAL ENSEMBLE 199 12.4.3 ENERGY DISTRIBUTIONS 201 12.4.4 A STATISTICAL VIEW OF HEAT FLOW 202 12.4.5 INTERNAL MOLECULAR MOTIONS, ENERGY, AND STATISTICAL MECHANICS 203 12.5 A STATISTICAL VIEW OF ENTROPY 204 12.5.1 STATISTICAL DISTRIBUTIONS 204 12.5.2 THE STATISTICAL LINKS TO ENTROPY 205 12.6 THE THIRD LAW AND ENTROPY 206 CHAPTER 13 WHICH WAY IS THAT SYSTEM GOING? THE GIBBS FREE ENERGY 208 13.1 BIOLOGICAL ENERGY TRANSDUCTION 208 13.1.1 A BIOPHYSICAL EXAMINATION OF PHOTOSYNTHESIS 211 13.2 THE GIBBS FREE ENERGY 214 13.3 THE PROPERTIES OF THE GIBBS FREE ENERGY 215 13.4 INTRODUCTION OF (X, THE FREE ENERGY PER MOLE 217 13.5 THE ACTIVITY: TRANSFORMING THE IDEAL INTO THE REAL 217 13.6 MULTIPLE-COMPONENT SYSTEMS 218 13.7 CHEMICAL POTENTIAL AND CHEMICAL SYSTEMS 219 13.7.1 CHARACTERISTICS OF N 219 13.8 ENTROPY, ENTHALPY, AND FREE ENERGY OF MIXING 220 13.9 FREE ENERGY AND CHEMICAL EQUILIBRIUM 221 13.9.1 DERIVATION OF THE ACTIVITY 221 13.9.2 ACTIVITY OF THE STANDARD STATE 222 13.9.3 THE EQUILIBRIUM EXPRESSION 222 13.10 THE THERMODYNAMICS OF GALVANIC CELLS 224 13.11 FREE ENERGY CHANGES AND BIOCHEMICAL REACTIONS 225 CHAPTER 14 FRIENDS AND NEIGHBORS*INTERACTIONS IN A SYSTEM: PHASE EQUILIBRIA 228 14.1 PRINCIPLES OF PHASE EQUILIBRIA 228 14.2 THERMODYNAMICS OF TRANSFER BETWEEN PHASES 229 14.3 THE PHASE RULE 229 14.4 PURE SUBSTANCES AND COLLIGATIVE PROPERTIES 230 14.4.1 COLLIGATIVE PROPERTIES AND THE IDEAL SOLUTION 232 14.4.2 MEASUREMENTS OF THE ACTIVITY COEFFICIENT USING COLLIGATIVE PROPERTIES 234 14.5 SURFACE PHENOMENA 234 14.6 BINDING EQUILIBRIA 236 14.6.1 BINDING AT A SINGLE SITE 237 14.6.2 MULTIPLE BINDING SITES 237 14.6.3 BINDING WHEN SITES ARE EQUIVALENT AND INDEPENDENT 238 14.6.4 EQUILIBRIUM DIALYSIS AND SCATCHARD PLOTS 239 14.6.5 BINDING IN THE CASE OF NONEQUIVALENT SITES 241 14.6.6 NONINDEPENDENT BINDING: COOPERATIVITY 241 14.6.7 PROTON BINDING: THE PH BEHAVIOR OF BIOMOLECULES ... 243 XVI CONTENTS XVII CHAPTER 15 SPECTROSCOPY: ANALYSIS OF STRUCTURE 249 15.1 THE INTERACTION OF LIGHT WITH MATTER 249 15.2 ATOMIC AND MOLECULAR ENERGY LEVELS AND STRUCTURE: A QUANTUM PHENOMENON 249 15.2.1 POINTS OF MAXIMUM INFLECTION AT PARTICULAR WAVELENGTHS 249 15.2.2 EACH MAXIMUM HAS A DIFFERENT INTENSITY 250 15.2.3 THE MAXIMA ARE SPREAD TO SOME DEGREE AND ARE NOT SHARP 252 15.3 BIOCHEMICAL APPLICATIONS OF ABSORPTION SPECTROSCOPY 254 15.3.1 ABSORPTION SPECTROSCOPY 254 15.4 FLUORESCENCE AND PHOSPHORESCENCE 257 15.5 MOLECULAR PROBES THAT DEPEND ON SCATTERING PROCESSES 259 15.5.1 RAYLEIGH AND RAMAN SCATTERING 259 15.5.2 CIRCULAR DICHROISM AND OPTICAL ROTATION 261 15.6 STRUCTURE DETERMINATION FROM SPIN: EPR AND NMR SPECTROSCOPY 262 CHAPTER 16 ANALYSIS OF STRUCTURE: MICROSCOPY 268 16.1 SEEING IS BELIEVING 268 16.2 THE LIGHT MICROSCOPE 269 16.3 THE PROBLEM OF CONTRAST 271 16.3.1 DARK-FIELD MICROSCOPY 272 16.3.2 PHASE MICROSCOPY 272 16.3.3 POLARIZATION MICROSCOPY 273 16.3.4 HISTOCHEMISTRY 273 16.3.5 FLUORESCENCE MICROSCOPY 275 16.4 SCANNING PROBE MICROSCOPY 275 16.4.1 SCANNING TUNNELING MICROSCOPY (STM) 277 16.4.2 SCANNING FORCE MICROSCOPY 278 16.4.3 NEAR-FIELD OPTICAL MICROSCOPY OUTSIDE THE CLASSICAL LIMITS 280 CHAPTER 17 SCENIC OVERLOOK BACKWARD AND FORWARD 282 17.1 HIERARCHY OF ABSTRACTION IN BIOPHYSICAL CHEMISTRY 282 PART 4 THE STRUCTURE OF BIOLOGICAL STATE SPACE: BUILDING A MODEL OF AQUEOUS BIOCHEMISTRY CHAPTER 18 WATER: A UNIQUE STRUCTURE, A UNIQUE SOLVENT 287 18.1 INTRODUCTION 287 18.2 PHYSICAL PROPERTIES 288 18.3 CLASSIFICATION OF WATER AS A LIQUID 288 18.4 THE STRUCTURE OF MONOMOLECULAR WATER 289 18.5 HYDROGEN BONDS IN WATER 291 18.6 LIQUID WATER: STRUCTURE AND DYNAMICS 293 18.6.1 THEORIES OF THE STRUCTURE OF LIQUID WATER 294 18.7 HYDROPHOBIE FORCES 297 CHAPTER 19 ION-SOLVENT INTERACTIONS 300 19.1 UNDERSTANDING THE NATURE OF ION-SOLVENT INTERACTIONS THROUGH MODELING 300 CONTENTS 19.2 THE BORN MODEL 300 19.2.1 BUILDING THE MODEL 300 19.2.2 TESTING THE MODEL 303 19.3 ADDING WATER STRUCTURE TO THE CONTINUUM 305 19.3.1 THE ENERGY OF ION-DIPOLE INTERACTIONS 305 19.3.2 DIPOLES IN AN ELECTRIC FIELD: A MOLECULAR PICTURE OF DIELECTRIC CONSTANTS 306 19.3.3 WHAT HAPPENS WHEN THE DIELECTRIC IS LIQUID WATER? 310 19.4 EXTENDING THE ION-SOLVENT MODEL BEYOND BORN ...-. 312 19.4.1 RECALCULATING THE NEW MODEL 313 19.5 ION-SOLVENT INTERACTIONS IN BIOLOGICAL SYSTEMS 317 CHAPTER 20 ION-ION INTERACTIONS 319 20.1 ION-ION INTERACTIONS 319 20.2 THE DEBYE-HIICKEL MODEL 320 20.3 TESTING THE DEBYE-HIICKEL MODEL 325 20.4 A MORE RIGOROUS TREATMENT OF THE DEBYE-HIICKEL MODEL .... 327 20.5 CONSIDERATION OF OTHER INTERACTIONS 328 20.5.1 BJERRUM AND ION PAIRS 328 CHAPTER 21 LIPIDS IN AQUEOUS SOLUTION: THE FORMATION OF THE CELL MEMBRANE 330 21.1 THE FORM AND FUNCTION OF BIOLOGICAL MEMBRANES 330 21.2 SOLUTIONS OF SMALL NONPOLAR MOLECULES 330 21.3 SOLUTIONS OF ORGANIC IONS 331 21.3.1 SOLUTIONS OF SMALL ORGANIC IONS 331 21.3.2 SOLUTIONS OF LARGE ORGANIC IONS 332 21.4 THE MAJOR CLASSES OF BIOCHEMICAL SPECIES: LIPIDS 334 21.5 AQUEOUS AND LIPID PHASES IN CONTACT: THE ORGANIZATION OF LIPIDS INTO MEMBRANES 337 21.6 THE PHYSICAL PROPERTIES OF LIPID MEMBRANES 341 21.6.1 PHASE TRANSITIONS IN LIPID MEMBRANES 341 21.6.2 MOTION AND MOBILITY IN MEMBRANES 342 21.7 BIOLOGICAL MEMBRANES: A MORE COMPLETE PICTURE 343 CHAPTER 22 CONSTRUCTING A BIOLOGICAL STATE SPACE 346 22.1 THE CELL AND BIOLOGICAL COMPLEXITY 346 22.2 A BRIEF HISTORY OF LIFE: A PICTURE BOOK OF A CONTROVERSIAL SUBJECT 346 22.3 BIFURCATIONS, CATASTROPHES, AND EVOLUTION 348 22.3.1 THE ENERGY AND RESOURCE PROBLEM 348 22.3.2 THE WASTE PROBLEM: GLOBAL OXYGENATION 349 22.3.3 THE EUKARYOTIC CATASTROPHE 350 22.4 COMPARTMENTALIZATION 352 22.5 AN OVERVIEW OF THE CELL 352 22.5.1 THE CELL MEMBRANE 352 22.5.2 THE CYTOPLASMIC SPACE 353 22.5.3 THE ORGANELLES 354 22.5.4 THE NUCLEAR SPACE 357 22.6 CONTROL MECHANISMS 358 XVIII CONTENTS CHAPTER 23 MACROMOLECULES IN SOLUTION 361 23.1 INTRODUCTION 361 23.2 RANDOM WALK AND MARKOV PROCESSES 361 23.3 PEPTIDES AND PROTEINS 362 23.4 CARBOHYDRATES 367 23.4.1 POLYSACCHARIDES 369 23.5 THE MAJOR CLASSES OF BIOCHEMICAL SPECIES: NUCLEIC ACIDS 370 23.5.1 CHEMISTRY OF PURINES AND PYRIMIDINES 371 23.6 NONPOLAR POLYPEPTIDES IN SOLUTION 374 23.7 POLAR POLYPEPTIDES IN SOLUTION 376 23.8 TRANSITIONS OF STATE 381 23.9 THE PROTEIN FOLDING PROBLEM 385 23.10 PATHOLOGICAL PROTEIN FOLDING 388 23.10.1 ALZHEIMER S DISEASE 389 23.10.2 FAMILIAL AMYLOIDOTIC POLYNEUROPATHY 390 23.10.3 SPONGIFORM ENCEPHALOPATHIES 390 CHAPTER 24 MOLECULAR MODELING: MAPPING BIOCHEMICAL STATE SPACE 394 24.1 THE PREDICTION OF STRUCTURE AND FUNCTION 394 24.2 PRINCIPLES OF MOLECULAR MODELING 394 24.3 EMPIRICAL METHODS 395 24.3.1 STICKS AND STONES 395 24.3.2 THE ART OF THE POSSIBLE: RAMACHANDRAN PLOTS 397 24.3.3 THE MEDIUM IS THE MESSAGE: SECONDARY STRUCTURE PREDICTION 401 24.4 THE ULTIMATE GEDANKEN EXPERIMENTS? COMPUTATIONAL METHODS 403 24.5 MOLECULAR MECHANICS 407 24.5.1 BOND STRETCHING 409 24.5.2 BOND BENDING 410 24.5.3 TORSIONAL OR DIHEDRAL POTENTIAL FUNCTIONS 410 24.5.4 VAN DER WAALS INTERACTIONS 411 24.5.5 ELECTROSTATIC INTERACTIONS 412 24.6 QUANTUM MECHANICAL METHODS 413 CHAPTER 25 THE ELECTRIFIED INTERFACE 415 25.1 WHEN PHASES MEET: THE INTERPHASE 415 25.2 A MORE DETAILED EXAMINATION OF THE INTERPHASE REGION 417 25.3 THE SIMPLEST PICTURE: THE HELMHOLTZ-PERRIN MODEL 419 25.4 A DIFFUSE LAYER VERSUS A DOUBLE LAYER 419 25.5 COMBINING THE CAPACITOR AND THE DIFFUSE LAYERS: THE STERN MODEL 420 25.6 A COMPLETE PICTURE OF THE DOUBLE LAYER 421 25.7 COLLOIDAL SYSTEMS AND THE ELECTRIFIED INTERFACE 422 25.8 SALTING OUT REVISITED 426 CHAPTER 26 FORCES ACROSS MEMBRANES 427 26.1 ENERGETICS AND FORCE IN MEMBRANES 427 26.2 THE DONNAN EQUILIBRIUM 427 XIX CONTENTS 26.3 ELECTRIC FIELDS ACROSS MEMBRANES 429 26.3.1 DIFFUSION POTENTIALS AND THE TRANSMEMBRANE POTENTIAL 429 26.3.2 GOLDMAN CONSTANT FIELD EQUATION 430 26.4 ELECTROSTATIC PROFILES OF THE MEMBRANE 432 26.5 THE ELECTROCHEMICAL POTENTIAL 434 26.6 MOLECULES THROUGH MEMBRANES: PERMEATION OF THE LIPID BILAYER 434 26.6.1 MODES OF TRANSPORT 434 26.6.2 WATER TRANSPORT THROUGH A LIPID PHASE 435 PART 5 FUNCTION AND ACTION IN STATE SPACE CHAPTER 27 TRANSPORT: A NONEQUILIBRIUM PROCESS 441 27.1 TRANSPORT: AN IRREVERSIBLE PROCESS 441 27.2 PRINCIPLES OF NONEQUILIBRIUM THERMODYNAMICS 442 CHAPTER 28 FLOW IN A CHEMICAL POTENTIAL FIELD: DIFFUSION 445 28.1 THE PHENOMENON OF TRANSPORT 445 28.2 DIFFUSION AND THE CHEMICAL POTENTIAL 445 28.3 THE RANDOM WALK: A MOLECULAR PICTURE OF MOVEMENT 448 28.4 DRAG FORCES ON MOLECULES IN MOTION 451 28.5 TRANSPORT OF FLUIDS UNDER SHEAR STRESS 452 CHAPTER 29 FLOW IN AN ELECTRICAL FIELD: CONDUCTION 455 29.1 TRANSPORT IN AN ELECTRIC FIELD 455 29.1.1 THE NATURE OF IONIC SPECIES 455 29.2 A PICTURE OF IONIC CONDUCTION 456 29.3 THE EMPIRICAL OBSERVATIONS CONCERNING CONDUCTION 458 29.4 A MOLECULAR VIEW OF IONIC CONDUCTION 462 29.5 HOW DO INTERIONIC FORCES AFFECT CONDUCTIVITY? 464 29.6 THE SPECIAL CASE OF PROTON CONDUCTION 466 CHAPTER 30 ELECTROKINETIC PHENOMENA 470 30.1 THE CELL AND INTERPHASE PHENOMENA 470 30.2 ELECTROKINETIC PHENOMENA 470 30.2.1 THE ZETA POTENTIAL 470 30.2.2 STREAMING POTENTIAL 471 30.2.3 ELECTRO-OSMOSIS 471 30.2.4 ELECTROPHORESIS 472 30.2.5 SEDIMENTATION POTENTIAL 474 30.3 PRACTICAL APPLICATION OF ELECTROPHORESIS 474 30.4 ELECTROKINETICS AND BIOLOGY 476 CHAPTER 31 KINETICS: CHEMICAL KINETICS 480 31.1 CHEMICAL THERMODYNAMICS AND KINETICS 480 31.2 CHEMICAL KINETICS: A HISTORICAL VIEW 480 31.3 THE LANGUAGE OF KINETICS: THE PLAYERS 483 31.3.1 MECHANISM AND ORDER 483 31.4 ORDER OF A REACTION 483 31.5 EXPRESSIONS OF THE RATE LAWS 484 31.5.1 ZERO-ORDER REACTIONS 484 31.5.2 FIRST-ORDER REACTIONS 485 XX CONTENTS 31.5.3 SECOND-ORDER REACTIONS 485 31.5.4 EXPERIMENTAL DETERMINATION OF A RATE LAW 486 31.6 ELEMENTARY REACTIONS 486 31.7 REACTION MECHANISMS 487 31.7.1 COLLISION THEORY 487 31.7.2 SURPRISES IN THE COLLISION THEORY STATE SPACE 489 31.7.3 AN EXTENDED ABSTRACTION: TRANSITION STATE THEORY .... 490 31.7.4 UNIFYING OUR MODELS: THE POTENTIAL ENERGY SURFACE 492 CHAPTER 32 KINETICS: ENZYMES AND ELECTRONS 498 32.1 SOLUTION KINETICS 498 32.2 ENZYMES 498 32.2.1 ENZYME KINETICS 499 32.2.2 CHARACTERIZING THE PROPERTIES OF AN ENZYME 501 32.2.3 CONTROL OF ENZYMES 503 32.3 KINETICS OF ELECTRON TRANSFER 504 32.3.1 DYNAMIC ELECTROCHEMISTRY 504 32.3.2 ELECTRON TRANSFER 506 32.3.3 A QUANTUM MECHANICAL VERSION OF ELECTRON TRANSFER 509 32.4 ELECTRONIC CHARGE TRANSFER IN PROTEINS 509 EPILOGUE 516 APPENDIXES 517 APPENDIX A MATHEMATICAL METHODS 519 A. 1 UNITS AND MEASUREMENT 519 A.2 TRIGONOMETRIC FUNCTIONS 519 A.3 EXPANSION SERIES 521 A.4 DIFFERENTIAL AND INTEGRAL CALCULUS 521 A.4.1 PARTIAL DIFFERENTIATION 521 A.5 VECTORS 524 A.5.1 ADDITION AND SUBTRACTION 524 A.5.2 MAGNITUDE OF A VECTOR 524 A.5.3 MULTIPLICATION 524 APPENDIX B FICTITIOUS AND PSEUDOFORCES: THE CENTRIFUGAL FORCE 526 APPENDIX C THE DETERMINATION OF THE FIELD FROM THE POTENTIAL IN CARTESIAN COORDINATES 527 APPENDIX D HAMILTON S PRINCIPLE OF LEAST ACTION/FERMAT S PRINCIPLE OF LEAST TIME 528 APPENDIX E GEOMETRICAL OPTICS 529 E.I REFLECTION AND REFRACTION OF LIGHT 529 E.2 MIRRORS 529 E.2.1 THE PLANE MIRROR 529 E.2.2 THE CONCAVE MIRROR 530 E.3 IMAGE FORMATION BY REFRACTION 531 E.4 PRISMS AND TOTAL INTERNAL REFLECTION 532 XXI XXII CONTENTS APPENDIX F DERIVATION OF THE ENERGY OF INTERACTION BETWEEN TWO IONS .. 534 APPENDIX G DERIVATION OF THE STATEMENT Q M Q IMV 535 APPENDIX H DERIVATION OF THE CLAUSIUS-CLAPEYRON EQUATION 536 APPENDIX I DERIVATION OF THE VAN T HOFF EQUATION FOR OSMOTIC PRESSURE 537 APPENDIX J DERIVATION OF THE WORK TO CHARGE AND DISCHARGE A RIGID SPHERE 538 APPENDIX K QUANTUM ELECTRODYNAMICS 539 APPENDIX L ADIABATIC AND NONADIABATIC TRANSITIONS 541 APPENDIX M FERMI S GOLDEN RULE 542 PHYSICAL CONSTANTS 543 ANSWERS TO SELECTED PROBLEMS 544 INDEX 549
any_adam_object 1
author Bergethon, Peter R.
author_facet Bergethon, Peter R.
author_role aut
author_sort Bergethon, Peter R.
author_variant p r b pr prb
building Verbundindex
bvnumber BV012110992
classification_rvk WD 2000
WD 2200
classification_tum PHY 820f
CHE 802f
ctrlnum (OCoLC)845460882
(DE-599)BVBBV012110992
dewey-full 572
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 572 - Biochemistry
dewey-raw 572
dewey-search 572
dewey-sort 3572
dewey-tens 570 - Biology
discipline Chemie / Pharmazie
Physik
Biologie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01778nam a2200457 c 4500</leader><controlfield tag="001">BV012110992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000315 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">980811s1998 gw d||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">954215788</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387982620</subfield><subfield code="c">Pp. : DM 128.00</subfield><subfield code="9">0-387-98262-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845460882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012110992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2000</subfield><subfield code="0">(DE-625)148161:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2200</subfield><subfield code="0">(DE-625)148163:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 820f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 802f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bergethon, Peter R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The physical basis of biochemistry</subfield><subfield code="b">the foundations of molecular biophysics</subfield><subfield code="c">Peter R. Bergethon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 567 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulare Biophysik</subfield><subfield code="0">(DE-588)4170391-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biophysikalische Chemie</subfield><subfield code="0">(DE-588)4291844-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biophysikalische Chemie</subfield><subfield code="0">(DE-588)4291844-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekulare Biophysik</subfield><subfield code="0">(DE-588)4170391-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008200362&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008200362</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV012110992
illustrated Illustrated
indexdate 2024-12-23T14:54:44Z
institution BVB
isbn 0387982620
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008200362
oclc_num 845460882
open_access_boolean
owner DE-20
DE-91G
DE-BY-TUM
DE-M49
DE-BY-TUM
DE-526
DE-634
owner_facet DE-20
DE-91G
DE-BY-TUM
DE-M49
DE-BY-TUM
DE-526
DE-634
physical XXII, 567 S. graph. Darst.
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer
record_format marc
spellingShingle Bergethon, Peter R.
The physical basis of biochemistry the foundations of molecular biophysics
Molekulare Biophysik (DE-588)4170391-1 gnd
Biophysikalische Chemie (DE-588)4291844-3 gnd
subject_GND (DE-588)4170391-1
(DE-588)4291844-3
(DE-588)4123623-3
title The physical basis of biochemistry the foundations of molecular biophysics
title_auth The physical basis of biochemistry the foundations of molecular biophysics
title_exact_search The physical basis of biochemistry the foundations of molecular biophysics
title_full The physical basis of biochemistry the foundations of molecular biophysics Peter R. Bergethon
title_fullStr The physical basis of biochemistry the foundations of molecular biophysics Peter R. Bergethon
title_full_unstemmed The physical basis of biochemistry the foundations of molecular biophysics Peter R. Bergethon
title_short The physical basis of biochemistry
title_sort the physical basis of biochemistry the foundations of molecular biophysics
title_sub the foundations of molecular biophysics
topic Molekulare Biophysik (DE-588)4170391-1 gnd
Biophysikalische Chemie (DE-588)4291844-3 gnd
topic_facet Molekulare Biophysik
Biophysikalische Chemie
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008200362&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bergethonpeterr thephysicalbasisofbiochemistrythefoundationsofmolecularbiophysics